首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although transition-metal complexes are very attractive as homogeneous catalysts in fine chemistry, their high prices often limit their applications. A means to recycle those catalysts would solve this problem and would simultaneously facilitate the downstream purification of the product. This is now realized in a new concept in which homogeneous catalysis is coupled to dialysis. The advantages of homogeneous catalysis (off-the-shelf catalysts, high activities and selectivities) are thus combined with those of heterogeneous catalysis (easy catalyst separation from product solution, reuse of catalyst, and possibility for continuous operation). Since the heart of the process is the membrane, self-prepared membranes were preferred as they allow a better control and understanding of the separation characteristics. Rhodamine B was used as a probe molecule to define the working conditions of the membrane. The concept is proven to work for two relevant chiral reactions: a hydrogenation with Ru-BINAP and a hydrogen transfer reaction with Ru-TsDPEN [BINAP=(1,1'-binaphthalene)-2,2'-diylbis(diphenylphosphine); TsDPEN= tosyl-N,N'-diphenyl-1,2-ethanediamine].  相似文献   

3.
膦配体TPPTS(三-间磺酸钠-三苯基膦)的水溶性很好,有关其过渡金属配合物催化剂的应用与研究活跃。近年来,对丙烯腈C=C双键加氢的研究多集中在以钯为中心金属的多相催化体系上,已报道的有聚硅氧烷钯体系,膦酸锆负载钯体系,高分子负载钯.金属氧化物催化剂,SiO2负  相似文献   

4.
Novel cationic ruthenium(II) complexes bearing a 4,5‐diazafluorene unit and p‐cymene as ligands have been synthesised. The complexes were characterised based on elemental analysis and Fourier transform infrared and nuclear magnetic resonance spectroscopies. The synthesised Ru(II) complexes were employed as pre‐catalysts for the transfer hydrogenation of aromatic ketones using 2‐propanol as both hydrogen source and solvent in the presence of NaOH. All complexes showed high catalytic activity as catalysts in the reduction of substituted acetophenones to corresponding secondary alcohols. The products of catalysis were obtained with conversion rates of between 80 and 99%. Among the seven new complexes investigated, the most efficient catalyst showed turnover frequencies in the range 255–291 h?1 corresponding to 85 to 97% conversion, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
对RuCl3·XH2O和TPPTS[P(m-C6H4SO3Na)3]原位合成的水溶性钌膦络合物在水-有机两相体系中对肉桂醛的选择性加氢反应,考察了反应温度时间、膦配体浓度、搅拌速度、底物和催化剂之比等条件对反应活性和选择性的影响.对比了单长工链阳离子表面活性剂CTAB和双长链阳离子表面活性剂DCMAB(dicetyldimethylammonium)的助催化作用,发现DCMAB化作用明显优于CTAB,在DCMAB助催化作用下,转化率98.3%,选择性96.9%.  相似文献   

6.
Homogeneous and biphasic hydrogenation of avermectins catalyzed by rhodium complexes in situ formed from [RhCl(COD)]2 and triphenylphosphine or sulphonated arylphosphines, respectively, was studied under mild reaction conditions. Effects of adding TBAB and bis-QACs as phase transfer agents, Tween? 80 as non-ionic surfactant, β-cyclodextrin as inverse phase-transfer agent, and triphenylphosphine as co-ligand, are reported for the biphasic system.  相似文献   

7.
An inverted supercritical carbon dioxide (scCO(2))/aqueous biphasic system has been used as reaction media for Rh-catalysed hydrogenation of polar substrates. Chiral and achiral CO(2)-philic catalysts were efficiently immobilised in scCO(2) as the stationary phase, while the polar substrates and products were contained in water as the mobile phase. Notably, product separation and catalyst recycling were conducted without depressurisation of the autoclave. The catalyst phase was reused several times with high conversion and product recovery of more than 85 %. Loss of rhodium and phosphorus by leaching were found to be below the detection limit after the first two cycles in the majority of repetitive experiments. The reaction conditions were optimised with a minimum of experiments by using a simplex algorithm in a sequential optimisation. Total turnover numbers (TTNs) of up to 1600, turnover frequencies (TOFs) of up to 340 h(-1) and ee's up to 99 % were obtained in repetitive batch operations. The scope of the devised catalytic system has been investigated and a semicontinuous reaction setup has been implemented. The chiral ligand (R,S)-3-H(2)F(6)-BINAPHOS allowed highly enantioselective hydrogenation of itaconic acid and methyl-2-acetamidoacrylate combined with a considerable catalyst stability in these reaction media.  相似文献   

8.
The catalytic hydrogenation of aqueous bicarbonate was modelled utilizing a central composite experimental design. The results were compared with a dataset derived from a measurement procedure where univariate evaluations of the possible reaction conditions were applied. The results show good correlation between the measured and the modelled data. The optimum conditions to produce the highest possible formate concentration was identified by response surface methodology. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Ruthenium complexes [RuCl2L2] were prepared by treating [RuCl2(p‐cymene)]2 with structurally similar N‐(2‐(diphenylphosphino)benzylidene)‐3‐methylpyridin‐2‐amine, 4‐(2‐(diphenylphosphino)benzylideneamino)‐3‐methylphenol and 4‐(2‐(2‐(diphenylphosphino)benzylideneamino)ethyl)phenol refluxed in toluene. These complexes were used as catalysts for the transfer hydrogenation of acetophenones in 2‐propanol and for the direct hydrogenation of styrenes under hydrogen pressure. The results of the catalytic studies provide evidence that these complexes function as excellent catalysts for hydrogenation and transfer hydrogenation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The newfangled chiral aroylthiourea ligands (L1‐L6) were produced from unprotected D/L‐alanine and their water soluble Ru (II) organometallic catalysts ( 1 – 6 ) were designed from their reaction with [RuCl26p‐cymene)]2. The analytical and spectral methods were used to confirm the structure of the ligands and complexes. The solid state structure of L1, 5 and 6 was confirmed by single crystal XRD. The organometallic compounds ( 1 – 6 ) catalyzed the asymmetric transfer hydrogenation of aromatic, heteroaromatic and bulky ketones to yield respective enantiopure secondary alcohols with admirable conversions (up to 99%) and attractive enantiomeric excesses (ee up to 98%), in presence of formic acid and triethylamine in water medium under non‐inert atmospheric conditions.  相似文献   

11.
[Ru(3)(CO)(12)]-catalyzed transfer semihydrogenation of various functionalized diaryl alkynes with N,N-dimethylformamide (DMF) and water as hydrogen source affords cis- and trans-stilbenes. The stereodivergent approach can be switched by the use of acetic (HOAc) or trifluoroacetic (TFA) acid as additives. The catalytic processes can be applied to the synthesis of analogues of natural products such as cis-combretastatin A-4 and trans-resveratrol.  相似文献   

12.
Homogeneously catalyzed hydrogenations of unsaturated substrates with parahydrogen not only lead to strong polarization signals in 1H NMR spectra, but also can give rise to strong heteronuclear polarization, especially if the hydrogenations are carried out in low magnetic fields. As a typical example, the polarization transfer from protons to carbon nuclei during the hydrogenation of alkynes is outlined for several substrates. In systems containing easily accessible triple bonds, e.g. phenylethyne or 3,3‐dimethyl‐1‐butyne, polarization transfer occurs to all carbon nuclei in the molecule. Accordingly, in NMR spectra recorded in situ all 13C resonances can be observed with good to excellent signal‐to‐noise ratios using only a single transient. The qualitative influence of symmetry and electronic aspects of the substrate and its hydrogenation product on the efficiency of the transfer of polarization to the 13C‐nuclei are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The homo-Diels-Alder (HDA) reaction of norbornadiene (NBD) and internal functionalized alkynes leading to 8,9-disubstituted deltacyclenes using readily available electron-rich phosphine-ruthenium(II) catalysts is described.  相似文献   

14.
15.
On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 produc- tion and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase re- forming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic com- pounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hy- drocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the se- lectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a po- tential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hy- drogenation and increase the energy usage and hydrogen productivity.  相似文献   

16.
Piano‐stool ([(p‐cymene)Ru(thz)Cl], 2 ) and six‐coordinated ([Ru(thz)2(PPh3)2], 3 ) ruthenium complexes derived from 2‐phenylthiazoline‐4‐carboxylic acid (Hthz, 1 ) were synthesized for the first time, and fully characterized using conventional methods. Also, the molecular structure of complex 3 was determined using X‐ray analysis. These complexes were evaluated as catalysts for transfer hydrogenation of carbonyl compounds in the presence of isopropyl alcohol and KOtBu. Complex 2 was found to be more active than 3 in transfer hydrogenation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The mechanism of aqueous-phase asymmetric transfer hydrogenation (ATH) of acetophenone (acp) with HCOONa catalyzed by Ru-TsDPEN has been investigated by stoichiometric reactions, NMR probing, kinetic and isotope effect measurements, DFT modeling, and X-ray structure analysis. The chloride [RuCl(TsDPEN)(p-cymene)] (1), hydride [RuH(TsDPEN)(p-cymene)] (3), and the 16-electorn species [Ru(TsDPEN-H)(p-cymene)] (4) were shown to be involved in the aqueous ATH, with 1 being the precatalyst, and 3 as the active catalyst detectable by NMR in both stoichiometric and catalytic reactions. The formato complex [Ru(OCOH)(TsDPEN)(p-cymene)] (2) was not observed; its existence, however, was demonstrated by its reversible decarboxylation to form 3. Both 1 and 3 were protonated under acidic conditions, leading to ring opening of the TsDPEN ligand. 4 reacted with water, affording a hydroxyl species. In a homogeneous DMF/H(2)O solvent, the ATH was found to be first order in the concentration of catalyst and acp, and inhibited by CO(2). In conjunction with the NMR results, this suggests that hydrogen transfer to ketone is the rate-determining step. The addition of water stabilized the ruthenium catalyst and accelerated the ATH reaction; it does so by participating in the catalytic cycle. DFT calculations revealed that water hydrogen bonds to the ketone oxygen at the transition state of hydrogen transfer, lowering the energy barrier by about 4 kcal mol(-1). The calculations also suggested that the hydrogen transfer is more step-wise in nature rather than concerted. This is supported to some degree by the kinetic isotope effects, which were obscured by extensive H/D scrambling.  相似文献   

19.
20.
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The catalyst shows excellent selectivity toward the desired products with very high yield even after five repeated uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号