首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have developed a solid-state NMR method for observing the signals due to 13C spins of a peptide in the close vicinity of 31P and 2H spins in deuterated phospholipid bilayers. The signal intensities in 13C high-resolution NMR spectra directly indicate the depolarization of 1H by 1H-31P and 1H-2H dipolar couplings under multiple-contact cross-polarization. This method was applied to a fully 13C-, 15N-labeled 14-residue peptide, mastoparan-X (MP-X), bound to phospholipid bilayers whose fatty acyl chains are deuterated. The 13C NMR spectra for the depolarization were simulated from the chemical shifts and structure of membrane-bound MP-X previously determined and the distribution of 2H and 31P spins in lipid bilayers. The minimization of RMSD between the simulated and the experimental spectra showed that the amphiphilic alpha-helix of MP-X was located in the interface between the water layer and the hydrophobic domain of the bilayer, with nonpolar residues facing the phosphorus atoms and alkyl chains of the lipids.  相似文献   

2.
We report the first example of 17O NMR spectra from a selectively labeled transmembrane peptide, 17O-[Ala12]-WALP23, as a lyophilized powder and incorporated in hydrated phospholipid vesicles. It is shown that at high magnetic field it is feasible to apply 17O NMR to the study of membrane-incorporated peptides. Furthermore, we were able to estimate distances within the selectively labeled WALP peptide, which represents a consensus transmembrane protein sequence. This work opens up new applications of 17O solid-state NMR on biological systems.  相似文献   

3.
纳米雄黄与脂质体仿生膜的相互作用研究   总被引:1,自引:0,他引:1  
沈星灿  金涛  谢俊  梁宏  严喻 《中国科学B辑》2009,39(9):926-932
本工作以卵磷脂与胆固醇组成的磷脂小单层脂质体(small unilamelarvesicles,suv)作为仿生膜的简单模型,采用表面等离子共振技术(SPR)、荧光偏振、拉曼(Raman)光谱、核磁共振(NMR)及原子力显微镜(AFM)研究纳米雄黄与SUV仿生膜的相互作用,证实了磷脂是纳米雄黄作用的关键靶分子.随纳米雄黄结合,SUV仿生膜的相对粘度聃值增大,膜的流动性减小.Raman光谱数据计算表明,作用后膜的纵向有序性参数s。。及横向有序性参数Slat值增大,说明纳米雄黄的结合使磷脂膜的脂酰基链全反式构型比例上升,膜的流动性减小.由Raman光谱和引PNMR结果推测,磷脂极性头部是纳米雄黄与磷脂的主要结合位点。AFM实时观测,纳米雄黄通过在膜表面打“孔”或“洞”的方式,损坏磷脂膜.  相似文献   

4.
Cisplatin nanocapsules represent a lipid formulation of the anticancer drug cis-diamminedichloroplatinum(II) (cisplatin) characterized by an unprecedented cisplatin-to-lipid ratio and exhibiting strongly improved cytotoxicity against tumor cells in vitro as compared to the free drug (Burger, K. N. J., et al. Nat. Med. 2002, 8, 81-84). Cisplatin nanocapsules are prepared by the repeated freezing and thawing of an equimolar dispersion of phosphatidylserine (PS) and phosphatidylcholine (PC) in a concentrated aqueous solution of cisplatin. Here, the molecular architecture of these novel nanostructures was elucidated by solid-state NMR techniques. 15N NMR and 2H NMR spectra of nanocapsules containing 15N- and 2H-labeled cisplatin, respectively, demonstrated that the core of the nanocapsules consists of solid cisplatin devoid of free water. Magic-angle spinning 15N NMR showed that approximately 90% of the cisplatin in the core is present as the dichloro species. The remaining 10% was accounted for by a newly discovered dinuclear Pt compound that was identified as the positively charged chloride-bridged dimer of cisplatin. NMR techniques sensitive to lipid organization, 31P NMR and 2H NMR, revealed that the cisplatin core is coated by phospholipids in a bilayer configuration and that the interaction between solid core and bilayer coat exerts a strong ordering effect on the phospholipid molecules. Compared to phospholipids in liposomal membranes, the motion of the phospholipid headgroups is restricted and the ordering of the acyl chains is increased, particularly in PS. The implications of these findings for the structural organization, the mechanism of formation, and the mode of action of cisplatin nanocapsules are discussed.  相似文献   

5.
The magnetic alignment behavior ofbicelles (magnetically alignable phospholipid bilayered membranes) as a function of the q ratio (1,2-dihexanoyl-sn-glycerol phosphatidylcholine/1,2-dimyristoyl-sn-glycerol phosphatidylcholine mole ratio) and temperature was studied by spin-labeled X-band electron paramagnetic resonance (EPR) spectroscopy and solid-state 2H and 31P NMR spectroscopy. Well-aligned bicelle samples were obtained at 45 degrees C for q ratios between 2.5 and 9.5 in both the EPR and NMR spectroscopic studies. The molecular order of the system, S(mol), increased as the q ratio increased and as the temperature decreased. For higher q ratios (> or = 5.5), bicelles maintained magnetic alignment when cooled below the main phase transition temperature (approximately 30 degrees C when in the presence of lanthanide cations), which is the first time, to our knowledge, that bicelles were magnetically aligned in the gel phase. For the 9.5 q ratio sample at 25 degrees C, S(mol) was calculated to be 0.83 (from 2H NMR spectra, utilizing the isotopic label perdeuterated 1,2-dimyristoyl-sn-glycerol phosphatidylcholine) and 0.911 (from EPR spectra utilizing the spin probe 3beta-doxyl-5alpha-cholestane). The molecular ordering of the high q ratio bicelles is comparable to literature values of S(mol) for both multilamellar vesicles and macroscopically aligned phospholipid bilayers on glass plates. The order parameter S(bicelle) revealed that the greatest degree of bicelle alignment was found at higher temperatures and larger q ratios (S(bicelle) = -0.92 for q ratio 8.5 at 50 degrees C).  相似文献   

6.
Spin-exchange experiments are useful for improving the resolution and establishment of sequential assignments in solid-state NMR spectra of uniformly (15)N-labeled proteins oriented macroscopically in phospholipid bilayers. To exploit this advantage fully, it is crucial that the diagonal peaks in the two-dimensional exchange spectra are suppressed. This may be accomplished using the recent pure-exchange (PUREX) experiments, which, however, suffer from up to a threefold reduction of the cross-peak intensity relative to experiments without diagonal-peak suppression. This loss in sensitivity may severely hamper the applicability for the study of membrane proteins. In this paper, we present a two-dimensional exchange experiment (iPUREX) which improves the PUREX sensitivity by 50%. The performance of iPUREX is demonstrated experimentally by proton-mediated (15)N-(15)N spin-exchange experiments for a (15)N-labeled N-acetyl-L-valyl-L-leucine dipeptide. The relevance of exchange experiments with diagonal-peak suppression for large, uniformly (15)N-labeled membrane proteins in oriented phospholipid bilayers is demonstrated numerically for the G-protein coupled receptor rhodopsin.  相似文献   

7.
Mixed micelles of the phospholipid 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) with sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium bromide (DTAB) in aqueous solutions and the effects of interactions between the components were studied by fluorescence and NMR measurements. The regular solution theory (RST) was applied to analyze the experimental critical micelle concentration values determined from the fluorescence spectra of pyrene in the mixed micelles. Negative values for the interaction parameter (beta12) were obtained for both DHPC + SDS and DHPC + DTAB mixtures, with the value being more negative in the former case. The negative beta12 values for the two systems imply that the interaction between the phospholipid and the two ionic surfactants is attractive in nature, being more intense in the case of DHPC + SDS. The interaction parameter, beta12, varies with composition of the mixtures indicating changes in packing. The proton NMR shifts are quite different for the two systems and also vary with composition. An interpretation of these experimentally determined chemical shifts in terms of the degree of compactness attributed to electrostatic and steric interactions in the mixed micelle supports the conclusions derived from the fluorescence cmc experiments.  相似文献   

8.
Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.  相似文献   

9.
This communication demonstrates for the first time that solid-state NMR spectroscopic studies can be used to investigate aligned phospholipid bilayer nanotube arrays. Also, an integral membrane peptide can be successfully incorporated into the oriented phospholipid bilayer nanotube arrays and studied with 2H solid-state NMR spectroscopy.  相似文献   

10.
The synthetic peptide (C(18)H(37))(2)NCOCH(2)OCH(2)CON-(Gly)(3)-Pro-(Gly)(3)-OCH(2)Ph forms chloride-selective channels in liposomes and exhibits voltage-gating properties in planar phospholipid bilayers. The peptide fragment of the channel is based on a conserved motif in naturally occurring chloride transporters. Membrane-anchoring residues at the N- and C-terminal ends augment the peptide. NMR spectra (1D and 2D) of the channel in CDCl(3) showed significant variation in the absence and presence of stoichiometric tetrabutylammonium chloride (Bu(4)NCl). One-dimensional solution-state NMR titration studies combined with computational molecular simulation studies indicate that the peptide interacts with the salt as an ion pair and H-bonds chloride. To our knowledge, this is the first structural analysis of any synthetic anion-channel salt complex.  相似文献   

11.
Seven phospholipids, modified with ester groups in their hydrophobic chains, were synthesized and examined for their ability to promote sodium ion flux across vesicular membranes. It was found by 23Na NMR that only the phospholipids having short chain segments beyond their terminal ester groups catalyze sodium ion transfer by up to 2 orders of magnitude relative to a conventional phospholipid, POPC. The rates increase with the concentration of the ester-phospholipid admixed with POPC in the bilayer. More surprisingly, the rates increase with the time allowed for the vesicles to age. This was attributed to ester-phospholipid migrating in the bilayers to form domains that solubilize the sodium ion within the hydrocarbon interior of the membrane. Such membrane domains explain why shift reagent-modified NMR spectra display three 23Na signals representing sodium outside the vesicles, sodium within the vesicular water pools, and sodium within the membranes themselves.  相似文献   

12.
Transmembrane and in-plane oriented peptides have been prepared by solid-phase peptide synthesis, labeled with 3,3,3-2H3-alanine and 15N-leucine at two selected sites, and reconstituted into oriented phophatidylcholine membranes. Thereafter, proton-decoupled 15N and 2H solid-state NMR spectroscopy at sample orientations of the membrane normal parallel to the magnetic field direction have been used to characterize the tilt and rotational pitch angle of these peptides in some detail. In a second step the samples have been tilted by 90 degrees . In this setup the spectral line shapes are sensitive indicators of the rate of rotational diffusion. Whereas monomeric transmembrane peptides exhibit spectral averaging and well-defined resonances, larger complexes are characterized by broad spectral line shapes. In particular the deuterium line shape is sensitive to association of a few transmembrane helices. In contrast, the formation of much larger complexes affects the 15N chemical shift spectrum. The spectra indicate that in liquid crystalline membranes an amphipathic peptide of 14 amino acids exhibits fast rotational diffusion on both the 2H and 15N time scales (>10(-5) s). Extending the sequences to 26 amino acids results in pronounced changes of the 2H solid-state NMR spectrum, whereas the signal intensities of 15N solid-state NMR spectra degrade. Below the phase transition temperature of the phospholipid bilayers, motional averaging on the time scale of the 2H solid-state NMR spectrum ceases for transmembrane and in-plane oriented peptides. Furthermore at temperatures close to the phase transition the total signal intensities of the deuterium solid-state NMR spectra strongly decrease.  相似文献   

13.
We have recently reported phospholipid bicelles (bilayered micelles) that have positive anisotropy of the magnetic susceptibility and align with their normals parallel to an external magnetic field [J. Am. Chem. Soc. 2001, 123, 1537]. Improvements have been made via the synthesis of a new phospholipid, 1-dodecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-phosphocholine (DBBPC). Bicelles can be formed by mixing DBBPC with a short-chain phospholipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in a ratio between 5.1:1 and 6.5:1 in an aqueous medium. The (31)P NMR spectra clearly show that these bicelles align with their principal axes parallel to the magnetic field within a wide temperature range. The (31)P chemical shifts indicate that the conformation of the polar headgroup in these bicelles may be different from that in common bicelles. The phase behavior of a mixture of DBBPC/DHPC with 6:1 mole ratio was investigated in the temperature range of 10-75 degrees C using (31)P, (2)H, and (23)Na NMR. At lower temperatures (10-54 degrees C), the system is dominated by the bicellar phase. At higher temperatures (54-75 degrees C), isotropic micelles are formed and coexist with the bicelles. The partial alignment of maltotriose in the DBBPC/DHPC system was studied at three temperatures, and the (1)H-(13)C dipolar coupling constants are compared with those obtained for two other bicelle solutions.  相似文献   

14.
Membrane binding of a doubly lipid modified heptapeptide from the C-terminus of the human N-ras protein was studied by Fourier transform infrared, solid-state NMR, and neutron diffraction spectroscopy. The 16:0 peptide chains insert well into the 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipid matrix. This is indicated by a common main phase transition temperature of 21.5 degrees C for both the lipid and peptide chains as revealed by FTIR measurements. Further, (2)H NMR reveals that peptide and lipid chains have approximately the same chain length in the liquid crystalline state. This is achieved by a much lower order parameter of the 16:0 peptide chains compared to the 14:0 phospholipid chains. Finally, proton/deuterium contrast variation of neutron diffraction experiments indicates that peptide chains are localized in the membrane interior analogous to the phospholipid chains. In agreement with this model of peptide chain insertion, the peptide part is localized at the lipid-water interface of the membrane. This is revealed by (1)H nuclear Overhauser enhancement spectra recorded under magic angle spinning conditions. Quantitative cross-peak analysis allows the examination of the average location of the peptide backbone and side chains with respect to the membrane. While the backbone shows the strongest cross-relaxation rates with the phospholipid glycerol, the hydrophobic side chains of the peptide insert deeper into the membrane interior. This is supported by neutron diffraction experiments that reveal a peptide distribution in the lipid-water interface of the membrane. Concurring with these experimental findings, the amide protons of the peptide show strong water exchange as seen in NMR and FTIR measurements. No indications for a hydrogen-bonded secondary structure of the peptide backbone are found. Therefore, membrane binding of the C-terminus of the N-ras protein is mainly due to lipid chain insertion but also supported by interactions between hydrophobic side chains and the lipid membrane. The peptide assumes a mobile and disordered conformation in the membrane. Since the C-terminus of the soluble part of the ras protein is also disordered, we hypothesize that our model for membrane binding of the ras peptide realistically describes the membrane binding of the lipidated C-terminus of the active ras protein.  相似文献   

15.
Polyunsaturated phospholipids are known to be important with regard to the biological functions of essential fatty acids, for example, involving neural tissues such as the brain and retina. Here we have employed two complementary structural methods for the study of polyunsaturated bilayer lipids, viz. deuterium ((2)H) NMR spectroscopy and molecular dynamics (MD) computer simulations. Our research constitutes one of the first applications of all-atom MD simulations to polyunsaturated lipids containing docosahexaenoic acid (DHA; 22:6 cis-Delta(4,7,10,13,16,19)). Structural features of the highly unsaturated, mixed-chain phospholipid, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC), have been studied in the liquid-crystalline (L(alpha)) state and compared to the less unsaturated homolog, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The (2)H NMR spectra of polyunsaturated bilayers are dramatically different from those of less unsaturated phospholipid bilayers. We show how use of MD simulations can aid in interpreting the complex (2)H NMR spectra of polyunsaturated bilayers, in conjunction with electron density profiles determined from small-angle X-ray diffraction studies. This work clearly demonstrates preferred helical and angle-iron conformations of the polyunsaturated chains in liquid-crystalline bilayers, which favor chain extension while maintaining bilayer flexibility. The presence of relatively long, extended fatty acyl chains may be important for solvating the hydrophobic surfaces of integral membrane proteins, such as rhodopsin. In addition, the polyallylic DHA chains have a tendency to adopt back-bended (hairpin-like) structures, which increase the interfacial area per lipid. Finally, the material properties have been analyzed in terms of the response of the bilayer to mechanical stress. Simulated bilayers of phospholipids containing docosahexaenoic acid were less sensitive to the applied surface tension than were saturated phospholipids, possibly implying a decrease in membrane elasticity (area elastic modulus, bending rigidity). The above features distinguish DHA-containing lipids from saturated or monounsaturated lipids and may be important for their biological modes of action.  相似文献   

16.
Proton-detected NMR diffusion and (31)P NMR chemical shifts/bandwidths measurements were used to investigate a series of liposomal formulations where size and PEGylation extent need to be controlled for ultrasound mediated drug release. The width of the (31)P line is sensitive to aggregate size and shape and self-diffusion (1)H NMR conveys information about diffusional motion, size, and PEGylation extent. Measurements were performed on the formulations at their original pH, osmolality, and lipid concentration. These contained variable amounts of PEGylated phospholipid (herein referred to as PEG-lipid) and cholesterol. At high levels of PEG-lipid (11.5 and 15 mol%) the self-diffusion (1)H NMR revealed the coexistence of two entities with distinct diffusion coefficients: micelles (1.3 to 3x10(-11) m(2)/s) and liposomes (approximately 5x10(-12) m(2)/s). The (31)P spectra showed a broad liposome signal and two distinct narrow lines that were unaffected by temperature. The narrow lines arise from mixed micelles comprising both PEG-lipids and phospholipids. The echo decay in the diffusion experiments could be described as a sum of exponentials revealing that the exchange of PEG-lipid between liposomes and micellar aggregates is slower than the experimental observation time. For low amounts of PEG-lipid (1 and 4.5 mol%) the (31)P spectra consisted of a broad signal typically obtained for liposomes and the diffusion data were best described by a single exponential decay attributed solely to liposomes. For intermediate amounts of PEG-lipid (8 mol%), micellization started to occur and the diffusion data could no longer be fitted to a single or bi-exponential decay. Instead, the data were best described by a log-normal distribution of diffusion coefficients. The most efficient PEG-lipid incorporation in liposomes (about 8 mol%) was achieved for lower molecular weight PEG (2000 Da vs 5000 Da) and when the PEG-lipid acyl chain length matched the acyl chain length of the liposomal core phospholipid. Simultaneously to the PEGylation extent, self-diffusion (1)H NMR provides information about the size of micelles and liposomes. The size of the micellar aggregates decreased as the PEG-lipid content was increased while the liposome size remained invariant.  相似文献   

17.
The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively (15)N-labeled samples to resolve and assign the backbone amide resonances and to measure the associated (15)N chemical shift and (1)H-(15)N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. (1)H/(13)C/(15)N triple-resonance experiments were applied to selectively (13)C'- and (15)N-labeled samples to complete the resonance assignments, especially for residues in the nonhelical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers.  相似文献   

18.
This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC), was attached to the pore-lining transmembrane domain (M2delta) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14 degrees was calculated for the M2delta peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000-fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 microg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique.  相似文献   

19.
2H, 31P, and 1H‐magic‐angle‐spinning (MAS) solid‐state NMR spectroscopic methods were used to elucidate the interaction between sorbic acid, a widely used weak acid food preservative, and 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) bilayers under both acidic and neutral pH conditions. The linewidth broadening observed in the 31P NMR powder pattern spectra and the changes in the 31P longitudinal relaxation time (T1) indicate interaction with the phospholipid headgroup upon titration of sorbic acid or decanoic acid into DMPC bilayers over the pH range from 3.0 to 7.4. The peak intensities of sorbic acid decrease upon addition of paramagnetic Mn2+ ions in DMPC bilayers as recorded in the 1H MAS NMR spectra, suggesting that sorbic acid molecules are in close proximity with the membrane/aqueous surface. No significant 2H quadrupolar splitting (ΔνQ) changes are observed in the 2H NMR spectra of DMPC‐d54 upon titration of sorbic acid, and the change of pH has a slight effect on ΔνQ, indicating that sorbic acid has weak influence on the orientation order of the DMPC acyl chains in the fluid phase over the pH range from 3.0 to 7.4. This finding is in contrast to the results of the decanoic acid/DMPC‐d54 systems, where ΔνQ increases as the concentration of decanoic acid increases. Thus, in the membrane association process, sorbic acids are most likely interacting with the headgroups and shallowly embedded near the top of the phospholipid headgroups, rather than inserting deep into the acyl chains. Thus, antimicrobial mode of action for sorbic acid may be different from that of long‐chain fatty acids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Both the MN-glycoprotein from human erythrocytes and the hydrophobic fragment from the protein isolated with trypsin treatment, T(is), have been recombined with egg phosphatidylcholine in bilayers at various phospholipid/protein ratios. In order to investigate the effect of the protein on the phospholipid headgroups, 31P nuclear magnetic resonance spectra were obtained with the MN-glycoprotein recombined with egg phosphatidylcholine, which revealed two classes of phospholipid environments, one immobilized and one not immobilized. Electron spin resonance (ESR) of fatty acid methyl ester spin labels provided supporting evidence. Computer analysis of the ESR spectra indicate that 4-5 moles of phospholipid are immobilized per mole of protein over a wide range of lipid-to-protein ratios. The immobilization of the phospholipids appears mediated by both the polar headgroups and the hydrocarbon tails of the phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号