首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract—The damaging effect of visible light on photoreceptors and pigment epithelium has been studied mainly in the albino rat with continuous or intermittent exposures to green light for up to several days. Similar damage as in the albino rat but with different doses of light and different times of exposures were observed in pigmented rats, hamster strains, mouse strains and in the nocturnal monkey. The damage is graded histologically mainly by the size of the area of the retina over which the photoreceptors have died. The damage is quantitatively assessed by the measurement of ERG and DNA content of the retina. The action spectrum for the irreversible damage agress with the absorption curve for rhodopsin. Threshold damage occurs with diffuse light that reduces acutely the rhodopsin of the whole retina by about 10%. Damage is a function of body and eye temperature during exposure. At a body temperature of 42°, 2–4 h of exposure produces the same damage as exposure for 30 h at normal temperature using 1500 lux. The damage is also very markedly dependent upon the light history of the animal prior to exposure. Cyclic environmental light of I to 10 ft-cd for several days or weeks reduces very significantly the damaging effect compared to animals reared simultaneously in continuous darkness. Cyclic light rearing is associated with a reduction in opsin and rhodopsin of the whole retina, an increase in the molar phospholipid/opsin ratio and a reduction in the length of the outer segment. Protection is also produced by Vitamin A deficiency but significantly only when rhodopsin content is decreased by maintenance in very weak cyclic light. Thus Vitamin A deficiency and environmental light seem to use the same mechanism. Results do not support the possibility that damage is caused by a cytotoxic effect of retinol.  相似文献   

2.
Transgenic rats with the P23H mutation in rhodopsin exhibit increased susceptibility to light damage, compared with normal animals. It is known that light-induced retinal damage requires repetitive bleaching of rhodopsin and that photoreceptor cell loss is by apoptosis; however, the underlying molecular mechanism(s) leading to photoreceptor cell death are still unknown. Photoproducts, such as all-trans retinal or other retinoid metabolites, released by the extensive bleaching of rhodopsin could lead to activation of degenerative processes, especially in animals genetically predisposed to retinal degenerations. Using wild-type and transgenic rats carrying the P23H opsin mutation, we evaluated the effects of acute intense visible light on retinoid content, type and distribution in ocular tissues. Rats were exposed to green light (480-590 nm) for 0, 5, 10, 30 and 120 min. Following light treatment, rats were sacrificed and neural retinas were dissected free of the retinal pigment epithelium. Retinoids were extracted from retinal tissues and then subjected to HPLC and mass spectral analysis. We found that the light exposure affected relative levels of retinoids in the neural retina and retinal pigment epithelium of wild-type and P23H rat eyes similarly. In the P23H rat retina but not the wild-type rat retina, we found a retinoic acid-like compound with an absorbance maximum of 357 nm and a mass of 304 daltons. Production of this retinoic acid-like compound in transgenic rats is influenced by the age of the animals and the duration of light exposure. It is possible that this unique retinoid may be involved in the process of light-induced retinal degeneration.  相似文献   

3.
Crystallins in the retina may serve a chaperone-like protective function. In this study we measured mRNA levels for alpha-, beta- and gamma-crystallins in rat retinas following treatment with potentially damaging levels of light. We also determined crystallin protein patterns in photoreceptor cell rod outer segments (ROSs) isolated from rats exposed to intense light. Weanling albino rats were maintained in a dim cyclic light environment or in darkness for 40days. At P60 animals were treated with intense visible light, for as long as 8h, beginning at various times of the day or night. Retinas were excised immediately after light treatment and used for quantitative RT-PCR, or to prepare ROSs for western analysis. Some eyes were frozen in OCT for crystallin immunohistochemistry. Intense light exposure led to increases in mRNA expression for all retinal crystallins and to changes in ROS crystallin immunoreactivity. These light-induced changes were found to depend on the time of day that exposure started, duration of light treatment and previous light rearing history. We suggest that crystallin synthesis in retina exhibits a dependence on both light stress and circadian rhythm and that within photoreceptor cells crystallins appear to migrate in a light-independent, circadian fashion.  相似文献   

4.
Rhodopsin is the dim light photosensitive pigment of animals. In this work, we undertook to study the structure of rhodopsin from swine and compare it with bovine and rat rhodopsin. Porcine rhodopsin was analyzed using methodology developed previously for mass spectrometric analysis of integral membrane proteins. Combining efficient protein cleavage and high performance liquid chromatography separation with the sensitivity of mass spectrometry (MS), this technique allows the observation of the full protein map and the posttranslational modifications of the protein in a single experiment. The rhodopsin protein from a single porcine eye was sequenced completely, with the exception of two single-amino acid fragments and one two-amino acid fragment, and the gene sequence reported previously was confirmed. The posttranslational modifications, similar to the ones reported previously for bovine and rat rhodopsin, were also identified. Although porcine rhodopsin has a high degree of homology to bovine and rat rhodopsins and most of their posttranslational modifications are identical, the glycosylation and phosphorylation patterns observed were different. These results show that rhodopsin from a single porcine eye can be characterized completely by MS. This technology opens the possibility of rhodopsin structural and functional studies aided by powerful mass spectrometric analysis, using the fellow eye as an internal control.  相似文献   

5.
In the rat, photoreceptor cell death from exposure to intense visible light can be prevented by prior treatment with antioxidants. In this study we subjected albino rats raised in dim cyclic light and rats made more susceptible to light damage by rearing in darkness to exposures of green light that led to similar losses of photoreceptor cells. Rhodopsin and photoreceptor DNA, indicators of the number of surviving photoreceptor cells, were determined at various times over a period of 14 days after light exposure. Fragmentation of DNA was determined over a similar time course by neutral and alkaline agarose gel electrophoresis. Apoptosis in retinal DNA was measured by quantitating the appearance of 180 base pair (bp) nucleosomal fragments. Oxidation of DNA was measured by electrochemical detection of the nucleoside 8-hydroxydeoxyguanosine (8-OHdG) after separation by high-performance chromatography. For albino rats reared in dim cyclic light, 24 h of intense light exposure resulted in the loss of 50% rhodopsin and photoreceptor cell DNA. In dark-reared rats, the losses were 40%, respectively, after only 3 h of intense light treatment. In both cases pretreatment with the antioxidant dimethylthiourea (DMTU) prevented rhodopsin and photoreceptor cell DNA loss. The kinetics of the light-induced apoptosis depended markedly on the rearing environment of the rats. The DNA ladders appeared within 12 h of the onset of intense light in the rats reared in dim cyclic light. In these rats the 180 bp fragment was at two-thirds of its maximum intensity immediately after 24 h of light exposure and reached the maximum 12 h later. Dimethylthiourea partially inhibited ladder formation in rats reared in dim cyclic light and delayed the time of appearance of the 180 bp maximum by 6 h. By contrast, in rats reared in darkness the 180 bp fragment was undetected immediately after 3 h of light exposure and reached its maximum 2 days later. Pretreatment with DMTU completely eliminated DNA ladders in these rats. Alkaline gel electrophoresis revealed a pattern of single-strand DNA breaks, with relatively high molecular weight fragments, 6 h after light exposure of dark-reared rats. Single-strand DNA breaks in cyclic light rats corresponded with the onset of apoptotic ladders, but peak values preceded by 12 h the peak of DNA ladder formation. The quantity of 8-OHdG in retinal DNA remained close to control values in all samples with the exception of a peak of twice the control value 18 h after light exposure in the dark-reared rats and a value 60% higher 16 days after exposure in cyclic light animals. Dimethylthiourea had no effect on the amount of oxidized purine in any of the samples. The differences between dark-reared rats and rats reared in dim cyclic light in the kinetics of DNA fragmentation and in their response to treatment with DMTU is consistent with previous observations of fundamental differences in retinal cell physiology in these animals. In dim light-reared rats, the pathway to apoptosis may be qualitatively different from the pathway to net photoreceptor loss in rats reared in darkness. The lack of effect of DMTU on 8-OHdG formation suggests that the oxidation of DNA bases is not a causal factor in light-mediated photoreceptor cell death.  相似文献   

6.
Damage to rat retinal DNA induced in vivo by visible light   总被引:2,自引:0,他引:2  
Intense visible light can damage retinal photoreceptor cells by photochemical or thermal processes, leading to cell death. The precise mechanism of light-induced damage is unknown; however, oxidative stress is thought to be involved, based on the protective effect of antioxidants on the light-exposed retina. To explore the in vivo effects of light on retinal DNA, rats were exposed to intense visible light for up to 24 h and the time courses of single-strand breaks in restriction fragments containing the opsin, insulin 1 and interleukin-6 genes were measured. All three gene fragments displayed increasing single-strand modifications with increasing light exposure. Treatment with the antioxidant dimethylthiourea prior to light exposure delayed the development of net damage. The time course of double-strand DNA damage was also examined in specific genes and in repetitive DNA. The appearance of discrete 140-200 base-pair DNA fragments after 20 h of light exposure implicated a nonrandom, possibly enzymatic damaging mechanism. The generation of nucleosome core-sized DNA fragments, in conjunction with single-strand breaks, suggests two phases of light-induced retinal damage, with random attack on DNA by activated oxygen species preceding enzymatic degradation.  相似文献   

7.
Mineral supplements are often included in multivitamin preparations because of their beneficial effects on metabolism. In this study, we used an animal model of light‐induced retinal degeneration to test for photoreceptor cell protection by the essential trace element zinc. Rats were treated with various doses of zinc oxide and then exposed to intense visible light for as long as 8 h. Zinc treatment effectively prevented retinal light damage as determined by rhodopsin and retinal DNA recovery, histology and electrophoretic analysis of DNA damage and oxidized retinal proteins. Zinc oxide was particularly effective when given before light exposure and at doses two‐ to four‐fold higher than recommended by the age‐related eye disease study group. Treated rats exhibited higher serum and retinal pigment epithelial zinc levels and an altered retinal gene expression profile. Using an Ingenuity database, 512 genes with known functional annotations were found to be responsive to zinc supplementation, with 45% of these falling into a network related to cellular growth, proliferation, cell cycle and death. Although these data suggest an integrated and extensive regulatory response, zinc induced changes in gene expression also appear to enhance antioxidative capacity in retina and reduce oxidative damage arising from intense light exposure.  相似文献   

8.
Retinal degenerative conditions increase susceptibility to light damage, but rapid retinal degeneration (RD) models show less susceptibility to cyclic dim light. We investigated whether constant blue light (BL) exposure can eliminate the residual visual responses in a comparatively rapid RD rat model. Pigmented rhodopsin mutant S334ter line-3 rat pups (21 days old) were exposed for 5-6 consecutive days to constant BL. Visual behavior was evaluated with an optokinetic head tracking apparatus. Electrophysiological recordings were made from the superior colliculus (SC). S-antigen, red-green opsin and rhodopsin immunoreactive residual photoreceptors were counted. Following BL exposure, head tracking was significantly reduced at 0.25 cycles degree(-1) in 38-day-old line 3 rats. With a 0.125 cycles degree(-1) stimulus, the head tracking performance of 80-day-old BL rats were similar to that of 220-day-old no-BL-treated line-3 rats. SC recordings also revealed a significant decrease in the residual photoreceptor activity. Histological evaluation showed reduction of the rod population in the central area of the light-damaged retina. Exposure to constant BL considerably reduces the residual visual responses in a rapid degenerating RD rat model.  相似文献   

9.
Photochemical damage to the retina occurs for prolonged exposures of intense light. Two action spectra exist for this phenomenon. In rat an action spectrum matching the absorption spectrum of rhodopsin was found. In macaque, the susceptibility for photochemical damage decreased continuously from the UV to long visible wavelengths. Later, such a spectrum was also found in rat. In search for critical parameters that determine the shape of the spectrum we gathered all available data on the damage threshold dose for monochromatic radiation and noted the experimental conditions. The rhodopsin action spectrum was found in two sources; the other 16 sources adhered to the short wavelength spectrum. Comparing the conditions we conclude that the critical parameters for the generation of either action spectrum remain elusive. Experiments are suggested to resolve this issue and fill a few gaps in our knowledge.  相似文献   

10.
The damaging effects of visible light on the mammalian retina can be detected as functional, morphological or biochemical changes in the photoreceptor cells. Although previous studies have implicated short-lived reactive oxygen species in these processes, the termination of light exposure does not prevent continuing damage. To investigate the degenerative processes persisting during darkness following light treatment, rats were exposed to 24 h of intense visible light and the accumulation of DNA damage to restriction fragments containing opsin, insulin 1 or interleukin-6 genes was measured as single-strand breaks (ssb) on alkaline agarose gels. With longer dark treatments all three DNA fragments showed increasing DNA damage. Treatment of rats with the synthetic antioxidant dimethylthiourea prior to light exposure reduced the initial development of alkali-sensitive strand breaks and allowed significant repair of all three DNA fragments. The time course of double-strand DNA breaks was also examined in specific genes and repetitive DNA. Nucleosomal DNA laddering was evident immediately following the 24 h light treatment and increased during the subsequent dark period. The increase in the intensity of the DNA ladder pattern suggests a continuation of enzymatically mediated apoptotic processes triggered during light exposure. The protective effects of antioxidant suggests that the light-induced DNA degradative process includes both early oxidative reactions and enzymatic processes that continue after cessation of light exposure.  相似文献   

11.
This study investigated a possible circadian rhythm of light damage susceptibility in photoreceptors of both cyclic light-reared and dark-reared rats. A single exposure to intense green light was administered, beginning either in the early light period, the late light period or the dark period. In some animals exposed in the dark period, the synthetic antioxidant dimethylthiourea was administered before or after the onset of intense light exposure. Retinas were examined either immediately after exposure or after 2 weeks of recovery in darkness. Rod outer segment length and outer nuclear layer thickness measurements were used to assess light damage, along with qualitative analysis of swelling and disruption of the outer retinal layers. In all animals, retinal light damage was the most severe when intense light exposure began during the dark period. However, this severe damage was significantly reduced by pretreatment with the antioxidant. In a separate set of unexposed animals, fluctuations in plasma adrenocorticotropic hormone (ACTH) and corticosterone concentrations followed the same time course, regardless of the light regime during rearing. Our data support the notion of a circadian rhythm of light damage susceptibility that peaks in the dark period and yet can be modulated by the exogenous administration of an antioxidant.  相似文献   

12.
Abstract —The fluorescence of housefly photoreceptors was studied in vivo by using the deep pseudopupil technique. Whereas the rhodopsin R490 of the peripheral retinular cells fluoresces negligibly the metarhodopsin M580 fluoresces distinctly in the red. The newly discovered metarhodopsin M'is produced by intense blue light and can be reconverted into rhodopsin by intense long wavelength light. M'also fluoresces in the red; its excitation spectrum and emission spectrum peak at max= 570 and 660 nm respectively.
Intense ultraviolet light irreversibly reduces the visual pigment fluorescence as well as the broad band autofluorescence (kmnx 470 nm) originating from non-visual pigments in the fly's eye.  相似文献   

13.
Abstract— Squid opsin which is capable of combining with 11- cis or 9- cis retinal to reconstitute photo-pigment has been prepared by irradiation of rhabdomal membranes with orange light (> 530 nm) in the presence of 0.2 M hydroxylamine. When the irradiation is carried out either at concentrations of hydroxylamine higher than 0.2 M or with light of wavelength shorter than 530 nm, rhodopsin in the membranes is bleached quickly, but the ability of the resultant opsin to form rhodopsin is greatly reduced.
The optimum pH for rhodopsin regeneration in rhabdomal membranes was found to be between 6.5 and 8.5. The rate of regeneration of rhodopsin increases with raising temperature, and at about 20°C it is almost the same as that of isorhodopsin. Even after solubilization in digitonin solution, opsin still preserves the ability to reform rhodopsin.
All- trans retinal can be incorporated into retinochrome-bearing membranes, in which it is isomerized into 11- cis isomer by the photoisomerase activity of retinochrome. Rhabdomal membranes retaining active opsin can take up 11- cis retinal from retinochrome membranes so as to synthesize rhodopsin.  相似文献   

14.
Abstract—In this study we have investigated effects of dietary supplementation or deficiency in α-tocopherol (vitamin E) and selenium on acute light stress to albino rats. Selenium, which is an essential component of the enzyme glutathione peroxidase, and α-tocopherol are thought to be important in preventing in vivo lipid peroxidation. Before light stress, sections of paraffin embedded eyes show an intense yellow autofluorescent pigment localized in the retinal pigment epithelium (RPE) of the deficient rats which is barely visible in tissue sections from the supplemented rats. The fluorescent pigment is thought to be the result of damaging lipid peroxidation reactions. In addition the dcficient rats show increased electroretinogram (ERG) thresholds and decreased ERG-amplitudes compared to the supplemented rats. Acute 12 h light stress did not produce an increase in autofluorescent pigment in the RPE of the supplemented or deficient rats. The supplemented rats. however. showed marked light damage effects as measured by ERG-parameters. Contrary to our expectations, the deficient rats showed a lesser amount of light damage to the ERG than the supplemented rats. Our ERG results to date fail to implicate r-tocopherol levels or glutathione peroxidase activity as major factors in protecting the retina and pigment epithelium from damage after acute light stress.  相似文献   

15.
NANOSECOND LASER PHOTOLYSIS OF RHODOPSIN AND ISORHODOPSIN   总被引:3,自引:0,他引:3  
Kinetic and spectral measurements have been carried out on the primary intermediate in the photolysis of rhodopsin and isorhodopsin, initiated by a 457 nm, 6 ns (FWHM) laser pulse. In rhodopsin the kinetic decay of bathorhodopsin was found to be 140 ± 15 ns at 20°C. The decay of bathorhodopsin to lumirhodopsin has an activation energy of 51 ± 4 kJ/mol (12.2 ± 1 kcal/mol). The decay kinetics of bathorhodopsin were found to be the same for rhodopsin in membrane and detergent solubilized suspensions. The kinetic decay of the batho product in the photolysis of isorhodopsin was found to be the same as rhodopsin.
The corrected transient spectrum 50 ns following excitation in rhodopsin has two peaks near 560 and 440 nm. A peak was also observed in isorhodopsin near 550 nm at 50 ns following excitation but no transient was observed in the blue. The 550 nm peak in isorhodopsin has an intensity similar to that in rhodopsin indicating that the quantum yields for the formation of batho products of rhodopsin and isorhodopsin are similar under the irradiation conditions used here. Transient spectra for rhodopsin and isorhodopsin 1 μs following excitation are also different. In isorhodopsin the corrected transient spectrum has a peak at 500 nm, similar to low temperature steady state irradiation spectra. The 1 μs transient spectrum in rhodopsin is more intense than in isorhodopsin and shows a peak at 475 nm.  相似文献   

16.
Ocular phototoxicity.   总被引:2,自引:0,他引:2  
The human eye is constantly exposed to sunlight and artificial lighting. Therefore the eye is exposed to UV-B (295-320 nm), UV-A (320-400 nm), and visible light (400-700 nm). Light is transmitted through the eye and then signals the brain directing both sight and circadian rhythm. Therefore light absorbed by the eye must be benign. Damage to the young and adult eye by intense ambient light is avoided because the eye is protected by a very efficient antioxidant system. In addition, there are protective pigments such as the kynurenines, located in the human lens, and melanin, in the uvea and retina, which absorb ambient radiation and dissipate its energy without causing damage. After middle age there is a decrease in the production of antioxidants and antioxidant enzymes. At the same time, the protective pigments are chemically modified (lenticular 3-hydroxy kynurenine pigment is enzymatically converted into the phototoxic chromophore xanthurenic acid; melanin is altered from an antioxidant to pro-oxidant) and fluorescent chromophores (lipofuscin) accumulate to concentrations high enough to produce reactive oxygen species. We have known for some time that exposure to intense artificial light and sunlight either causes or exacerbates age-related ocular diseases. We now know many of the reasons for these effects, and with this knowledge methods are being developed to interfere with these damaging processes.  相似文献   

17.
Abstract—Continuous exposure of albino rats to low intensity light causes progressive deterioration of the photoreceptor cells. Losses in ERG (b-wave) sensitivity which accompany this ‘light damage’ are directly related to lowered rhodopsin levels in the retina. The same relationship has been observed in light adaptation studies in which the retina is not damaged. Thus, it appears that the production of b-wave responses is not seriously altered when photoreceptor morphology is disrupted.  相似文献   

18.
The mechanism of the toxicity of light on the retina remains unclear despite a large number of investigations. The purpose of this study is to identify and localize the ultrastructural changes and the site of the earliest damage after intense light exposure. Nine adult Syrian golden hamsters (Mesocricetus auratus) have been maintained under constant illumination with a high-pressure mercury lamp (HQJ R 80 W Deluxe, Osram, Berlin, light intensity 1000 lx) for 12 h, followed by an additional 3 h in the dark. Light damage is assessed by light and electron microscopy. Morphological evaluation reveals focal damage to the retinal pigment epithelial (RPE) cells in close proximity to less-affected RPE cells and normal photoreceptors. Collagen fibers in Bruch's membrane lose their parallel orientation. Occasionally, fusion of cell membranes of neighboring rod outer segments (ROS) is also observed. Continuous, 12 h exposure of hamsters to intense light results in initial focal damage to some RPE cells, such that severely damaged RPE cells are found adjacent to intact RPE cells. Only slight damage to the photoreceptors is evident, suggesting that the sequence of the pathological changes resulting from light begins with damage to the RPE cells and associated Bruch's membrane.  相似文献   

19.
Relative bleaching rates of bovine rhodopsin (rod outer segments) in the presence and absence of seven porphyrins and methylene blue were measured under exposure to lambdamax = 675 nm light, using UV-vis spectroscopy. Rate enhancements on the order of up to three times compared to the bleaching of rhodopsin alone where observed. Fluorescence measurements and other data suggests that the porphyrins act as photosensitizers and excite the visual pigment via electron or triplet state energy transfer. These mechanisms suggest that rhodopsin possesses a pocket, proximal to the Schiff base so that porphyrins act as photosensitizers.  相似文献   

20.
Recent studies on rhodopsin structure and function are reviewed and the properties of vertebrate as well as invertebrate rhodopsin described. Open issues such as the 'red shift' of the absorbance spectra are emphasized in the light of the present model of the retinal-binding pocket. The processes that restore the rhodopsin content in photoreceptors are also presented with a comparison between vertebrate and invertebrate visual systems. The central role of rhodopsin in the phototransduction cascade becomes evident by examining the main reports on light-activated conformational changes of rhodopsin and its interaction with transducin. Shut-off mechanisms are considered by reporting the studies on the sites of rhodopsin phosphorylation and arrestin binding. Furthermore, recent findings on the energetics of phototransduction point out that the ATP needed for photoreception in vertebrates is synthesized in the outer segments where phototransduction events take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号