首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many types of molecular integrals involving Slater functions can be expressed, with the ζ‐function method in terms of sets of one‐dimensional auxiliary integrals whose integrands contain two‐range functions. After reviewing the properties of these functions (including recurrence relations, derivatives, integral representations, and series expansions), we carry out a detailed study of the auxiliary integrals aimed to facilitate both the formal and computational applications of the ζ‐function method. The usefulness of this study in formal applications is illustrated with an example. The high performance in numerical applications is proved by the development of a very efficient program for the calculation of two‐center integrals with Slater functions corresponding to electrostatic potential, electric field, and electric field gradient. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

2.
A powerful and accurate numerical three‐dimensional integration scheme was developed especially for molecular orbital calculations. A multicenter integral is decomposed into the sum of single‐center integrals using nuclear weight functions and calculated using Gaussian quadrature rules. The decomposed single‐center integrands show strong anisotropy. With a careful selection of the Gaussian quadrature rule according to the anisotropy, it is possible to obtain an accuracy of 13 digits with a small number of integration points for the overlap integrals, normalization integrals, and molecular integrals for the hydrogen molecule. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 509–523, 1999  相似文献   

3.
The elastic forward scattering of high-energy electrons from molecules has been studied in the second Born approximation. An integral transformation has been adopted to evaluate the second Born integrals analytically without explicit use of molecular wave functions. In the high-energy limit, the differential cross section for the forward scattering is expressed in terms of electric dipole and quadrupole moments, the second moment of charge distribution with respect to the molecular center, and transition dipole moments. All these quantities are shown to be computable from molecular electron densities in the ground state.  相似文献   

4.
This article presents cubature grids of the Gaussian type that are adapted for the purpose of wave function calculation on atoms and molecules. The problems of the singularity at the nucleus, the derivatives in the kinetic energy, and the presence of two‐electron integrals are shown to be resolved. Each grid has a definite degree of accuracy so that it reproduces the exact values of all the integrals in a defined class. Seventh‐degree accuracy can be obtained from a grid of 143 nodes. The grids are applied, as simple illustrations, to well‐known self‐consistent field (SCF) calculations on helium. Grids for homonuclear diatomics are also discussed and an illustrative application given to a homonuclear diatomic molecule. A comparison between a molecular grid and the union of two unmodified atomic grids shows that overlaps and distortions in weights can occur to the extent that this is not practical. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

5.
6.
The Gauss transform of Slater‐type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two‐center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two‐center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

7.
Variational calculations utilizing the analytic gradient of explicitly correlated Gaussian molecular integrals are presented for the ground state of the hydrogen molecule. Preliminary results serve to motivate the need for general formulas for analytic first derivatives of molecular integrals involving multicenter, explicitly correlated Gaussian geminals with respect to Gaussian exponents and coordinates of the orbital centers. Explicit formulas for analytic first derivatives of Gaussian functions containing correlation factors of the form exp(-βrij2) are derived and discussed. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 991–999, 1997  相似文献   

8.
Utilizing the fact that solid-harmonic combinations of Cartesian and Hermite Gaussian atomic orbitals are identical, a new scheme for the evaluation of molecular integrals over solid-harmonic atomic orbitals is presented, where the integration is carried out over Hermite rather than Cartesian atomic orbitals. Since Hermite Gaussians are defined as derivatives of spherical Gaussians, the corresponding molecular integrals become the derivatives of integrals over spherical Gaussians, whose transformation to the solid-harmonic basis is performed in the same manner as for integrals over Cartesian Gaussians, using the same expansion coefficients. The presented solid-harmonic Hermite scheme simplifies the evaluation of derivative molecular integrals, since differentiation by nuclear coordinates merely increments the Hermite quantum numbers, thereby providing a unified scheme for undifferentiated and differentiated four-center molecular integrals. For two- and three-center two-electron integrals, the solid-harmonic Hermite scheme is particularly efficient, significantly reducing the cost relative to the Cartesian scheme.  相似文献   

9.
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces.  相似文献   

10.
Analytical solutions to the Yukawa-like screened Coulomb nuclear attraction and electron repulsion molecular basic integrals, as well as to the basic integrals required to compute the virial coefficient, over Gaussian basis functions, are derived and cast into a practical closed form, suitable to interface with modern codes for the calculation of molecular electronic structure. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
Group theoretic methods are presented for the transformations of integrals and the evaluation of matrix elements encountered in multiconfigurational self-consistent field (MCSCF) and configuration interaction (CI) calculations. The method has the advantages of needing only to deal with a symmetry unique set of atomic orbitals (AO) integrals and transformation from unique atomic integrals to unique molecular integrals rather than with all of them. Hamiltonian matrix element is expressed by a linear combination of product terms of many-center unique integrals and geometric factors. The group symmetry localized orbitals as atomic and molecular orbitals are a key feature of this algorithm. The method provides an alternative to traditional method that requires a table of coupling coefficients for products of the irreducible representations of the molecular point group. Geometric factors effectively eliminate these coupling coefficients. The saving of time and space in integral computations and transformations is analyzed. © 1994 by John Wiley & Sons, Inc.  相似文献   

12.
The recently determined accurate values of the nuclear quadrupole coupling constant of the Sb nucleus in SbN, SbP, SbF, and SbCl and the calculated electric-field gradients at Sb in these molecules are used to obtain the nuclear quadrupole moment of 121Sb and 123Sb. The calculation of the electric-field gradient has been carried out by using the infinite-order two-component relativistic method in the scalar approximation. The accompanying change of picture of the electric-field gradient operator has been accounted for by employing the shifted nucleus model of nuclear quadrupoles. The electron correlation effects are calculated at the level of the coupled cluster approximation. The present calculations give the "molecular" value of the nuclear quadrupole moment of 121Sb equal to -556+/-24 mb which is considerably different from the old "recommended" value of -360+/-40 mb and also differs from the recent "solid-state" result (-669+/-15 mb). The validation of the present data is comprehensively discussed.  相似文献   

13.
A new algorithm for efficient evaluation of two-electron repulsion integrals (ERIs) using uncontracted geometrical-type Gaussian basis functions is presented. Integrals are evaluated by the Habitz and Clementi method. The use of uncontracted geometrical basis sets allows grouping of basis functions into shells (s, sp, spd, or spdf) and processing of integrals in blocks (shell quartets). By utilizing information common to a block of integrals, this method achieves high efficiency. This technique has been incorporated into the KGNMOL molecular interaction program. Representative timings for a number of molecules with different basis sets are presented. The new code is found to be significantly faster than the previous program. For ERIs involving only s and p functions, the new algorithm is a factor of two faster than previously. The new program is also found to be competitive when compared with other standard molecular packages, such as HONDO-8 and Gaussian 86.  相似文献   

14.
An offset-independent adiabatic inversion pulse is used in the diffusion experiment to uniformly excite a sample region that is sufficiently long to ignore the ending effects, yet is short enough to have a homogeneous RF field and to represent the pulsed field gradient with a linear approximation. Under these conditions, the diffusion decay of the peak intensity appears to be Gaussian as a function of the effective gradient field ge as if all the molecules inside the selected region experienced the same ge. Quantitative measurement of molecular diffusion coefficients is therefore made possible.  相似文献   

15.
The calculation of molecular integrals is extremely important for applications to such diverse areas as statistical mechanics and quantum chemistry. A careful derivation of a method for calculating primitive Gaussian integrals originally proposed by Obara and Saika is presented. The basic recursion relations for the two- and three-center overlap integrals is derived using a simple technique. Several new horizontal recursion relations are given. Finally, an innovative method for implementing these recursion relations is discussed. The recursion relations in this form are suited for programming using a symbolic manipulation language. There are several reasons why it is of interest to consider programming with symbolic manipulation. It has been found that it is possible to write algorithms that will generate values for Gaussian integrals for very large values of angular momentum automatically. Calculations can be done to arbitrary precision in Maple. Having these recursions programmed in Maple allows for the possibility of using the Maple programs to help in the writing of similar programs in other languages which are, numerically, much faster. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 557–570, 1997  相似文献   

16.
McMurchie–Davidson recursion formula is extended to derive the ab initio molecular integrals with higher angular quantum number complex Gaussian type basis function which has complex‐valued center coordinates and a complex‐valued exponent. Using the analytical recursion formulae, some calculations of electronic dynamics after beta decay of tritium hydride molecular ion HT+ are performed by a quantum wave packet method with thawed Gaussian basis functions of s‐ and p‐type. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
In this research, the complete general formulas for the analytical second derivative of the molecular integrals for spherical gaussian orbitals of electronic energy are presented. Formulas were given for the second derivative for orbital exponent, orbital and nuclear cartesian coordinates and coefficients of contracted gaussians. In order to save computational time, the formulas for the second derivative are written in terms of the original integrals. Although the formulas were presented in general for any type of application, the Floating Spherical Gaussian Orbital (FSGO) method is applied to some molecules such as LiH, H2O and CH2 (singlet) to check the formulas. The results were compared with the results of the finite difference method. Besides the accuracy of the analytical derivative, the saving in computational time is significant.  相似文献   

18.
We develop a new scheme for evaluating different molecular integrals using Gaussian type orbitals. In this new scheme, the evaluation of integrals is performed in two steps during runtime. The first step is a top-down procedure that maps each recurrence relation into a jagged array (array of arrays), where each element of a member array represents either the final results or some intermediate integrals that are stored in our developed data structure “coarse-grained circular buffer”. This step is the same for all different one- and two-electron operators so that the same algorithm and source codes can be used. In the second step, a bottom-up procedure is carried out that computes all the intermediate and the final molecular integrals by backtracking elements from the last member array of each jagged array. Different source codes should in principle be used for different electron operators in the second step, but which can be generated automatically by our developed recurrence-relation compiler. The currently proposed general recurrence-relation generation scheme provides a new, generic and automatic programming way for various one- and two-electron integrals needed in computational chemistry. Users can even introduce new electron operators and evaluate their integrals during runtime by combining the implementation of the proposed new scheme and the just-in-time compilation technique.  相似文献   

19.
Electro-optical, dynamo-optical and hydrodynamic properties of solutions of some fractions of cellulose carbanilate (CC) in dioxan have been investigated. In a variable electric field, strong dispersion of the Kerr effect is observed, indicating the dipole-orientational mechanism of electrical birefringence and its relaxation. A comparison of relaxation times of fractions with their molecular weights and intrinsic viscosities indicates that the mechanism responsible for the Kerr effect is the rotation of the molecule as a whole in an electric field (a kinetically rigid molecule). The dependence of relaxation time on molecular weight (M) shows that, with increase in M, the conformation of the CC molecule changes from a slightly curved rod to a rigid Gaussian coil. The same conclusion may be drawn from a study on the dependence of the equilibrium value of the Kerr constant on M. In the Gaussian range (high M), the Kerr effect depends on the longitudinal (with respect to the chain) component of the dipole moment formed by the CO bonds in the glucoside ring. At low M, the transverse components of the monomer dipoles begin to play an important part in birefringence.  相似文献   

20.
The analytical expressions are derived for the magnetic multipole moment integrals in terms of electric multipole moment integrals for which the closed formulas through the overlap integrals are obtained. By the use of the derived expressions in terms of overlap integrals, the electric and magnetic multipole moment integrals, the electric and magnetic properties of molecules can be evaluated most efficiently and accurately. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 145–150, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号