首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Due to higher requirements in productivity and cost efficiency of production lines, robots and other manipulators have to move faster. One possibility to fulfill the mentioned goals is to build lightweight constructions having elastic deformations in joints and links. The elastic components tend to vibrations and static deflections. Methods that compensate or minimize these drawbacks are the focus of this paper. An articulated robot with 6 joints and flexibility in joints and links is under consideration. The joints are actuated by DC motors combined with Harmonic Drive gears which offer high gear ratios but undergo elastic deformations. The links are flexible in two bending directions and in torsional sense. To achieve ordinary differential equations, a Ritz approach together with the projection equation is used. The obtained model is used for feedforward and feedback control design. Based on reference trajectories and on a rigid body model, estimations for the elastic deflections are calculated. These deflections are used to alter the reference trajectory in order to minimize the error of the tool center point. For basic active damping, non-local curvature feedback is used. Together with PD joint control and the feedforward control, satisfying results are obtained. Additionally, a sliding control approach is presented. The stiffness of the tool center point is enhanced with the drawback of less active damping. Simulation results and measured data are presented and compared. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Nonlinear dynamic model of a flying manipulator with two revolute joints and two highly flexible links is obtained using Hamilton’s principle. Flying base of the manipulator is a rigid body. Stress is treated three dimensionally in the isotropic linearly-elastic links, but the in-plane and out-of-plane warpings of the links’ cross-sections are neglected. Although the links’ cross-sections undergo negligible elastic orientation, their models are more accurate than a nonlinear 3D Euler–Bernoulli beam. Tension, compression, twisting and spatial deflections of each link are coupled to each other by some nonlinear terms including two new ones. In the issue of flying flexible-link manipulators new terminologies, namely forward/inverse kinetics instead of forward/inverse kinematics are suggested, since determination of position and orientation of the end-effector is coupled to the partial differential motion equations.  相似文献   

3.
In this paper, the developed model of an N-flexible-link mobile manipulator with revolute-prismatic joints is presented for the cooperative flexible multi mobile manipulator. In this model, the deformation of flexible links is calculated by using the assumed modes method. In additions, non-holonomic constraints of the robots’ mobile platforms that bound its locomotion are considered. This limitation is alleviated through the concurrent motion of revolute and prismatic joints, although it results in computational complexity and changes the final motion equations to time-varying form. Not only is the proposed dynamic model implemented for the multi-mobile manipulators with arms having independent motion, but also for multi-mobile manipulators in cooperation after defining gripper's kinematic constraints. These constraints are imported to the dynamic equations by defining Lagrange multipliers. The recursive Gibbs–Appell formulation is preferred over other similar approaches owing to the capability of solving the equations without the need to use Lagrange multipliers for eliminating non-holonomic constraints in addition to the novel optimized process of obtaining system equations. Hence, cumbersome simultaneous computations for eliminating the constraints of platform and arms are circumvented. Therefore, this formulation is improved for the first time by importing Lagrange multipliers for solving kinematic constrained systems. In the simulation section, the results of forward dynamics solution for two flexible single-arm manipulators with revolute-prismatic joints while carrying a rigid object are presented. Inverse dynamics equations of the system are also presented to obtain the maximum dynamic load-carrying capacity of the two-rigid-link mobile manipulators on a predefined path. Two constraints, namely the capacity of joint motors torque and robot motion stability are considered as the limitation criteria. The concluded motion equations are used to accurately control the movement of sensitive bodies, which is not achievable through the use of one platform.  相似文献   

4.
This paper is concerned with mathematical modeling and optimal motion designing of flexible mobile manipulators. The system is composed of a multiple flexible links and flexible revolute joints manipulator mounted on a mobile platform. First, analyzing on kinematics and dynamics of the model is carried out then; open-loop optimal control approach is presented for optimal motion designing of the system. The problem is known to be complex since combined motion of the base and manipulator, non-holonomic constraint of the base and highly non-linear and complicated dynamic equations as a result of the flexible nature of both links and joints are taken into account. In the proposed method, the generalized coordinates and additional kinematic constraints are selected in such a way that the base motion coordination along the predefined path is guaranteed while the optimal motion trajectory of the end-effector is generated. This method by using Pontryagin’s minimum principle and deriving the optimality conditions converts the optimal control problem into a two point boundary value problem. A comparative assessment of the dynamic model is validated through computer simulations, and then additional simulations are done for trajectory planning of a two-link flexible mobile manipulator to demonstrate effectiveness and capability of the proposed approach.  相似文献   

5.
This article proposes a new formalism for the dynamic modelling of cables that can even be applied when they are submitted to cross flow of water or air. An important application is the case of umbilical cables used in remotely operated vehicles. The primary basis for the formulation is to assume that the continuous flexibility is represented by a discrete approach, consisting of rigid links connected by elastic joints, allowing movement in three dimensions. Each elastic joint allows three independent movements, called elevation, azimuth and torsion (twist). A significant contribution of the proposed formalism is the development of a compact equation that allows obtaining the Lagrangian of the system directly and automatically, regardless of the number of links chosen to form a chain of rigid bodies connected by flexible joints to represent the continuous flexibility of the cable. This formulation allows the construction of an algorithm for obtaining the equations of the dynamic model of flexible cables.  相似文献   

6.
Inversion technique has been very successful in the tracking control of nonlinear dynamical systems. However, when applied to manipulators constructed with elastic links, inverse dynamics through direct integration in temporal space causes unbounded controller command. It has been suggested that seeking an inverse dynamics solution for a given tip trajectory with given initial conditions is an ill-posed problem. It has also been suggested that increasing model accuracy by including more terms in a truncated beam model worsens the controller’s ability to stabilize the system dynamics. In this paper, we seek to understand the nature of the inverse dynamics instability and to find an alternative solution. We appeal to the notion of a pseudo-rigid model which describes the beam deflection by a homogeneous displacement field. Particularly, we derive the mode shape in order to yield a bounded inverse dynamics solution. Different from most of the existing solutions where solution stability was achieved through modifying the output function, we modified the inverse dynamics model. A bounded inverse solution and model simplicity provide much needed ease in the design and implementation of an inversion controller. Numerical simulations and experiments have both been conducted to prove the validity of the proposed method.  相似文献   

7.
The dynamic modeling of hybrid systems, consisting of flexible and rigid parts results in large partial differential equation systems (PDE). With the assumption of small deflections and the Ritz expansion the PDE can be approximated by an ordinary differential equation system (ODE) but the number of degrees of freedom is generally high. In this paper a hybrid articulated robot with 2 flexible links and 6 joints is under consideration. The joints are equipped with Harmonic Drive gears with high gear ratio but relative low stiffness. Therefore additionally degrees of freedom are introduced for the elastic deflection of the gears. The links are modeled with flexibility in two bending directions and in torsional sense. To be able to achieve structured equations the projection equation in subsystem representation is used. The projection equation is based on the momentum and the angular momentum equations of each single finite or infinitesimal body which are projected into the space of minimal coordinates and subsequently are summed up. Groups of bodies are collected to the so called subsystems with separated describing velocities. These subsystems are linked together with the kinematical chain. Because the robot is tree structured it is possible to obtain an explicit expression for the second derivatives of the minimal coordinates with a recursive scheme (O(n) efficiency). The robot is controlled with a feed forward controller and a linear PD joint controller. Simulation results and measured data are presented and compared. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This paper discusses the analytical elastostatic stiffness modeling of parallel manipulators (PMs) considering the compliance of the link and joint. The proposed modeling is implemented in three steps: (1) the limb constraint wrenches are formulated based on screw theory; (2) the strain energy of the link and the joint is formulated using material mechanics and a mapping matrix, respectively, and the concentrated limb stiffness matrix corresponding to the constraint wrenches is obtained by summing the strain energy of the links and joints in the limb; and (3) the overall stiffness matrix is assembled based on the deformation compatibility equations. The strain energy factor index (SEFI) is adopted to describe the influence of the elastic components on the stiffness performance of the mechanism. Matrix structural analysis (MSA) using Timoshenko beam elements is applied to obtain analytical expressions for the compliance matrices of different joints through a three-step process: (1) formulate the element stiffness equation for each element; (2) extend the element stiffness equation to obtain the element contribution matrix, allowing the extended overall stiffness matrix to be obtained by summing the element contribution matrices; and (3) determine the stiffness matrices of joints by extracting the node stiffness matrix from the extended overall stiffness matrix and then releasing the degrees of freedom of twist. A comparison with MSA using Euler–Bernoulli beam elements demonstrates the superiority of using Timoshenko beam elements. The 2PRU-UPR PM is presented to illustrate the effectiveness of the proposed approach. Finally, the global SEFI and scatter matrix are used to identify the elastic component with the weakest stiffness performance, providing a new approach for effectively improving the stiffness performance of the mechanism.  相似文献   

9.
基于模糊传感器的机器人动态障碍环境中的运动控制   总被引:2,自引:0,他引:2  
对自主式机械手在动态和部分已知且存在运动障碍环境中的运动规划和控制进行了研究,解决了自由碰撞运动控制中具有普遍意义的问题。利用人工势能场的机器人导航控制技术由模糊控制实现,系统的稳定性由李雅普诺夫原理保证。模糊控制器为机器人伺服提供控制指令,使机器人在不可预知的环境中能实时地、自主地选择到达目标的路径和方向。在动态环境的实时控制中,基于传感器的运动控制是处理未知模型和障碍物的重要控制方式。  相似文献   

10.
The use of robotic manipulators in remote and sensitive areas calls for more robust solutions when handling joint failure, and the industry demands mathematically robust approaches to handle even the worst case scenarios. Thus, a systematic analysis of the effects of external forces on manipulators with passive joints is presented. In parallel manipulators passive joints can appear as a design choice or as a result of torque failure. In both cases a good understanding of the effects that passive joints have on the mobility and motion of the parallel manipulator is crucial. We first look at the effect that passive joints have on the mobility of the mechanism. Then, if the mobility, considering passive joints only, is not zero we find a condition for which the parallel manipulator is conditionally equilibrated with respect to a specific external force. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In conventional researches, cables of cable-driven parallel manipulators are treated as simple linear elements that can only work in tension. This results in the fact that the effect of cable dynamics on the positioning precision of the end-effector is not adequately taken into account. To overcome this shortcoming, a dynamic model for cable-driven parallel manipulators with cables of slowly time-varying length is presented in this paper. The partial differential equation characterizing the dynamics of a cable with varying-length is deduced, and converted into ordinary differential equations through spatial discretization by finite difference approximation. Then, the dynamic model for cable-driven parallel manipulators is achieved considering the relationship between the motion of the end-effector and the cable end force, in which the degrees of freedom of cables and the end-effector are all involved. Two numerical examples are demonstrated to validate the dynamic model, and also show that it is necessary to take into consideration the cable dynamics for manipulators of long-span cables.  相似文献   

12.
If one is dealing with active vibration suppression on a highly nonlinear flexible system, various techniques are needed. On the one hand a suitable dynamic model of the system is required. And on the other hand intelligent model based control concepts are necessary for active vibration damping. We deal with a basic model, where the flexibilities are approximated with linear springs and dampers, a so called lumped element model (LEM). For the control design we propose a control structure with two degrees of freedom (2DoF) for solving the tracking problem, based on the LEM. Such an approach allows designing the feedforward part independently of the feedback part. Hereby the feedforward control is based on the flatness approach, while for the feedback control several strategies are studied using acceleration- and gyrosensor-measurements. The contribution is completed with a validation by measurements from a very fast trajectory on an articulated robot with two flexible links and three elastic joints. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Due to the light-weight construction of modern large-scale manipulators used, e.g., in mobile concrete pumps, the elasticity of the construction elements plays a significant role in the dynamic behaviour of the system. Therefore, current research is concerned with control strategies for active damping of elastic vibrations and trajectory planning. For this purpose, tailored mathematical models are required. Apart from the mathematical modelling, the identification of the model parameters constitutes a challenging task. This is mainly due to the large number of parameters to be identified and, considering the large scale, due to the fact that the boom movement cannot be measured by means of standard sensors. This paper presents a systematic approach for the mathematical modelling and identification of hydraulically actuated large-scale manipulators. The feasibility of the overall approach is demonstrated by means of measurement results of a mobile concrete pump.  相似文献   

14.
Roughly speaking, anti control of chaos consists in injecting a chaotic behavior to a system by means of a control scheme. This note introduces a new scheme to solve the anti control of chaos for robot manipulators. The proposed controller uses an adaption law to estimate the robot parameters on line. Thus, the controller does not require any knowledge of the physical parameters of the manipulator, such as masses, lengths of the links, moments of inertia, etc. The new scheme is based in the velocity field control paradigm, hence the specification of a chaotic system to define a desired velocity field is required. Experimental results in a two degrees-of-freedom direct-drive robot illustrate the practical feasibility of the introduced theory. In order to achieve anti control of chaos of our experimental system, two different chaotic attractors are used: the Genesio-Tesi system and a Jerk-type system. Results showed that the controller is able to inject the chaotic behavior to the robot while the robot parameters are estimated on line.  相似文献   

15.
In order to improve the performance of the sliding mode controller, fuzzy logic sliding mode controller is proposed in this study. The control gain of the conventional sliding mode controller is tuned by a fuzzy logic rule base and, also dynamic sliding surfaces are obtained by changing their slopes using the error states of the system in another fuzzy logic algorithm. These controllers are then combined in order to enhance the performance. Afterwards, proposed controllers were used in trajectory control of a three degrees of freedom spatial robot, which is subjected to noise and parameter variations. Finally, the controllers introduced are compared with a PID controller which is commonly used for control of robotic manipulators in industry. The results indicate the superior performance of the proposed controller.  相似文献   

16.
A computationally efficient recursive model of a flexible manipulator with motors at the joints is described in this paper. The model adopts a mixed Eulerian and Lagrangian formulation of the equations of a flexible body and exploits the chained structure of the equations for a serial manipulator. The dynamic effects of the motors at the joints, including gyroscopic terms, are fully taken into account. Symbolic manipulation is used in a newly developed package, whose performance in detailed reproduction of the dynamic effects due to the interplay between the motors and the flexible links is assessed through simulation. A comparison between the complete model and a simplified one, where the motors are considered as simple inertias rotating around their own axis, has been carried out, using both a time domain analysis and a frequency domain analysis, in order to show the relevance of gyroscopic effects in modelling flexible robots.  相似文献   

17.
Summary If a rotating, massless, elastic shaft carrying a disk is supported at the ends by Cardan links, the motion of the disk depends on the angles at the joints and the torques transmitted by the joints. The system is considered for constant angular velocity and constant torques of the driving shafts. The investigation of this nonstationary system leads to two second order differential equations with periodic coefficients. In order to establish conditions for instability the characteristics exponents are calculated by means of generalized Hills determinants. It is found that there exist critical intervals for the angular velocity.  相似文献   

18.
In industrial applications, the performance of robot manipulators is always affected due to the presence of uncertainties and disturbances. This paper proposes a novel adaptive control scheme for robust control of robotic manipulators perturbed by unknown uncertainties and disturbances. First, an active sliding mode controller is designed and a sufficient condition is obtained guarantying reachability of the states to hit the sliding surface in finite time. Then, based on a Lyapunov function candidate an adaptive switching gain is derived which make the controller capable to bring the tracking error to zero without any disturbance exerted upon the stability. By virtue of this controller it can be shown that the controller can track the desired trajectories even in the presence of unknown perturbations. For the problem of determining the control parameters Particle Swarm Optimization (PSO) algorithm has been employed. Our theoretic achievements are verified by numerical simulations.  相似文献   

19.
To perform specific tasks in dynamic environments, robots are required to rapidly update trajectories according to changing factors. A continuous trajectory planning methodology for serial manipulators based on non-convex global optimization is presented in this paper. First, a kinematic trajectory planning model based on non-convex optimization is constructed to balance motion rapidity and safety. Then, a model transformation method for the non-convex optimization model is presented. In this way, the accurate global solution can be obtained with an iterative solver starting from arbitrary initializations, which can greatly improve the computational accuracy and efficiency. Furthermore, an efficient initialization method for the iterative solver based on multivariable-multiple regression is presented, which further speeds up the solution process. The results show that trajectory planning efficiency is significantly enhanced by model transformation and initialization improvement for the iterative solver. Consequently, real-time continuous trajectory planning for serial manipulators with many degrees of freedom can be achieved, which lays a basis for performing dynamic tasks in complex environments.  相似文献   

20.
移动机械臂进行空间协作时会产生复杂的非线性耦合,使得采用Lagrange方程或Newton-Euler法直接进行建模极为繁琐。针对双移动机械臂空间协作问题,提出了一种结合Udwadia-Kalaba (U-K)方法与Lagrange方程建立动力学模型的方法。在建模过程中,将负载简化为连杆,选择负载中心断开的方式对系统进行分解,从而避免了机械臂末端关节断开导致的末端关节转角与连杆转角的约束信息缺失问题;将分割形成的两个子系统通过Lagrange方程进行建模,得到了子系统的动力学模型;再将协作系统的固有几何关系通过约束形式引入,应用U-K方法得到了协作系统动力学模型,减少了建立动力学模型所需要的计算量;最后通过数值仿真验证了该方法所得到的动力学模型的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号