首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A radiochemical neutron activation analysis (RNAA) for simultaneous determination of uranium and vanadium in a single sample at trace levels is described. The method is based on post-irradiation wet-ashing and solvent extraction of vanadium with N-benzoyl-N-phenyl-hydroxylamine reagent. From the remaining aqueous phase, uranium is extracted into a toluene solution of tri-n-butyl phosphate. The chemical yields are determined spectrophotometrically for vanadium and by gamma-counting of the added natural uranium carrier for uranium. The method was evaluated by the analysis of reference materials and the results showed a good agreement with the certified values. The method was applied to the determination of vanadium and uranium in five military total diet samples in Slovenia.  相似文献   

2.
A procedure has been developed for the determination of thoirum and uranium in ores and geological materials. The technique is relatively simple, accurate and adaptable routinely. Gamma-ray peak interferences are discussed in detail and the usefulness of the multiple gamma-ray peak ratios in the determination of the purity of peaks has been explained. The precision and accuracy of the method have been determined by analysing IAEA and NBL Standard thorium/uranium ores.  相似文献   

3.
A neutron activation method is described for the determination of thorium and uranium in rocks at the microgram and submicrogram levels. Radiochemical separations are carried out using the alpha-active nuclides protactinium-231 and neptunium-237 as tracers. The method is applied to the Standard granite XXX and the standard diabase XXX.  相似文献   

4.
A rare earth group separation scheme followed by normal Ge(Li), low energy photon detector (LEPD), and Ge(Li)−NaI(Tl) coincidence-noncoincidence spectrometry significantly enhances the detection sensitivity of individual rare earth elements (REE) at or below the ppb level. Based on the selected γ-ray energies, normal Ge(Li) counting is favored for140La,170Tb and169Yb; LEPD is favored for low γ-ray energies of147Nd,153Sm,166Ho and169Yb; and noncoincidence counting is favored for141Ce,143Ce,142Pr,153Sm,171Er and175Yb. The detection of radionuclides152mEu,159Gd and177Lu is equally sensitive by normal Ge(Li) and noncoincidence counting;152Eu is equally sensitive by LEPD and normal Ge(Li); and153Gd and170Tm is equally favored by all the counting modes. Overall, noncoincidence counting is favored for most of the REE. Precise measurements of the REE were made in geological and biological standards. Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.  相似文献   

5.
The lanthanide elements, Th and U were measured in soils and agricultural crops collected in an area polluted by emissions from a phosphate fertilizer plant. Concentrations of the above elements in the soil and crop samples were determined by instrumental neutron activation analysis (INAA). Selected crop samples were also analyzed using radiochemical neutron activation analysis (RNAA) based on alkaline-oxidative fusion of the irradiated samples followed by precipitation of REE oxalates. Elevated levels of lanthanides, Th and U were found in some samples, especially in wheat chaff and parsley.  相似文献   

6.
A radiochemical neutron activation analysis method for the determination of 22 elements in high-purity tungsten has been developed. For the assay of indicator radionuclides with long half-lives, the radiochemical separation was performed from HF/H2O2, HF/NH4F and HCl/H2SO4 media by a combination of cation and anion exchange on a Dowex 50 W × 8 and Dowex 1 × 8 column. An effective removal of the matrix-produced radionuclides of W and Re was achieved. U was determined via 140La, the daughter nuclide of the fission product 140Ba. Limits of detection of 2 ng/g for U and 0.02 ng/g for Th can be achieved. For the other elements, the limits of detection are between 0.004 ng/g (Sc) and 200 ng/g (Sr). The elements Hf, Ta and Sb could be determined by instrumental neutron activation analysis. This method was applied to the analysis of two tungsten powder samples of different purity grade. The results and limits of detection are compared with those of other methods.  相似文献   

7.
Summary A radiochemical neutron activation analysis technique for the determination of uranium und thorium in highpurity aluminium via the indicator radionuclides 239Np and 233Pa, respectively, has been developed. The separation procedure is based on the removal of 24Na on hydrated antimony pentoxide followed by ion-exchange on Dowex-1X8 from HCl/HF and HCl medium. The eluate fraction being of interest for the determination of uranium and thorium contains > 99% of 239Np and 233Pa and, in addition, 11±2% of hafnium and 29±5% of zirconium, and non-detectable fractions of other radionuclides. For a 3-day irradiation of a 100 mg sample at a thermal neutron flux of 1014cm–2s–1 and a decay time of 5 days, the attainable detection limit for both elements is 0.05 ng/g. The method was applied to the analysis of different high-purity aluminium samples, and the results are compared with those obtained in other laboratories.
Bestimmung von Uran und Thorium in hochreinem Aluminium im sub-ng/g-Bereich durch radiochemische Neutronenaktivierungsanalyse
  相似文献   

8.
A radiochemical separation procedure using an inorganic exchanger, tin dioxide (TDO), for the separation of arsenic from antimony is reported here. This separation avoids the interference of 564 keV gamma-ray of122Sb in the measurement of the 559 keV gamma-ray of76As in neutron activation analysis. Environmental samples, after neutron irradiation and digestion, are taken up in 1M HCl–0.1M HF and passed through a TDO column which selectively retains arsenic. The effluent from the TDO column, after proper conditioning, is passed through an anion exchange column for quantitative retention of antimony. The procedure has been utilized for arsenic and antimony determination in NBS Orchard Leaves and NBS Albacore Tuna.  相似文献   

9.
A simple and sensitive radiochemical neutron activation analysis (RNAA) method has been developed for the simultaneous determination of mercury and selenium in biological materials. The radiochemical procedure is based upon the digestion of irradiated samples with sulphuric and nitric acids followed by subsequent extractions of mercury and selenium into toluene, first of mercury from 7.5 M H2SO4-0.01M HBr media and after of selenium from 7M H2SO4-1 M HBr media. After washing of the organic phases with similar media, the mercury bromide was back-extracted into 0.034M EDTA in 5% aqueous ammonia and the selenium bromide into 0.14M H2O2 in aqueous solution. The197Hg and the75Se were counted on a Ge(Li) detector. The precision and accuracy of the method was checked by analysing NBS Standard Reference Materials: orchard leaves and bovine liver.  相似文献   

10.
A radiochemical neutron activation analysis method for the determination of 22 elements in high-purity tungsten has been developed. For the assay of indicator radionuclides with long half-lives, the radiochemical separation was performed from HF/H2O2, HF/NH4F and HCl/H2SO4 media by a combination of cation and anion exchange on a Dowex 50 W × 8 and Dowex 1 × 8 column. An effective removal of the matrix-produced radionuclides of W and Re was achieved. U was determined via 140La, the daughter nuclide of the fission product 140Ba. Limits of detection of 2 ng/g for U and 0.02 ng/g for Th can be achieved. For the other elements, the limits of detection are between 0.004 ng/g (Sc) and 200 ng/g (Sr). The elements Hf, Ta and Sb could be determined by instrumental neutron activation analysis. This method was applied to the analysis of two tungsten powder samples of different purity grade. The results and limits of detection are compared with those of other methods. Received: 28 July 1997 / Revised: 29 October 1997 / Accepted: 1 November 1997  相似文献   

11.
Summary Regarding the favourably sensitive nuclear characteristics of iodine and of selenium but the very different half lives of their induced nuclides 128I and 75Se, a radiochemical neutron activation analysis method for simultaneous determination of these elements in a single sample was developed. It is based on the double irradiation LICSIR technique — Long Irradiation for Se (40h), Cooling (a week or more), Short Irradiation for iodine (1–15 min) with following Radiochemistry. After the second short irradiation, the sample is ignited in an oxygen flask and iodine and selenium are sequentially and selectively extracted as elemental iodine and 5-nitro-2,1,3 benzoselena diazole chelate. With the described method biological samples were analysed and the reliability of the results was checked by the analyses of different standard reference materials. Good agreement with certified values and high radiochemical purity of the spectra show the applicability of the radiochemical separation developed.  相似文献   

12.
A rapid method has been developed for the determination of mercury in environmental samples by thermal neutron activation analysis. Radiochemical separation involves the extraction of Hg/II/ with substoichiometric amounts of 2-mercaptobenzothiazole /2-HMBT/ into chloroform1. The time required for radiochemical purification and counting of two samples and a standard is about 2 h. Water, sludge and IAEA standard samples were analyzed for Hg concentration by this method.  相似文献   

13.
An epithermal instrumental neutron activation analysis (EINAA) method using cadmium filter was standardized to determine trace concentrations of thorium in four samples of uranium oxide (U3O8) samples. Samples and thorium standards, wrapped with cadmium foil, were irradiated at a reactor neutron flux of about 1012 cm?2 s?1. Radioactive assay was carried out using a Compton suppressed anticoincidence gamma ray spectrometer consisting of HPGe-BGO detectors coupled to MCA. Concentrations of thorium in these samples were found to be in the range of 15–72 mg kg?1. EINAA results were validated by determining thorium concentrations in uranium matrix by standard addition method. EINAA results were compared with those obtained by two wet chemical methods namely ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results obtained by the three methods were found to be in good agreement, indicating further validity of the proposed EINAA method.  相似文献   

14.
Uranium in thorium matrixes or in minerals and ores containing thorium is determined by epithermal neutron activation analysis (ENAA). In some minerals and ores, such as monazite sands, the analysis can be carried out by purely instrumental means with no chemical separation of uranium or thorium from the irradiated matrix. For thorium compound matrixes with very low uranium contents, a rapid radiochemical separation method, based on the retention of uranyl ion on anion-exchange resins, is first carried out, before counting the gamma-ray peaks for239U in multichannel analysers coupled to NaI(Tl) scintillators or to Ge(Li) detectors.  相似文献   

15.
The determination of medium and long-lived nuclides can be combined with short-lived ones if a medium or long irradiation is made prior to the short irradiation and radiochemical processing. Thus, an RNAA method previously developed for determination of iodine based on the reaction127I(n,)128I (T 1/2=25 m) using oxygen flask ignition of the irradiated sample, followed by solvent extraction with an iodine-iodide redox cycle, was combined with an overnight preirradiation to induce the235U fission product133I (T 1/2=20.8 h). By reactivating the sample, cooled 1–2 days after the first irradiation, for few minutes both128I and133I could be quantified in the separated iodine fraction. Non-combustible inorganic materials (e.g., sediment, soil, etc.) can be successfully ignited after mixing with excess cellulose powder. Chemical yields for iodine were determined spectrophotometrically in the organic phase, while homogeneously spiked Whatman cellulose powder was used as uranium standard. Mercury is also released on ignition and collected in the absorbing solution, from where it was separated by toluene extraction. Its chemical yield was determined for each aliquot using203Hg tracer and counting on an LEPD. Results for some suitable SRMs are presented, and the general features of the double irradiation technique discussed.  相似文献   

16.
Uranium and thorium contents of solar salts were measured by neutron activation analysis. In advance of neutron irradiation, U and Th were concentrated and separated from some interfering elements by neutralization in which they were precipitated with aluminium hydroxide from solutions obtained by dissolving the salts in water or dilute nitric acid solution. The uranium and thorium concentrations determined were from several hundred ppt to 10 ppb. It was strongly indicated that uranium tends to remain in the solution (brine from seawater) phase in the process of solar salt production while thorium tends to transfer to the solid (solar salt) phase.  相似文献   

17.
Separation method of a few ppb of uranium and thorium in tantalum metal by ion exchange for neutron activation analysis was established. After dissolving tantalum metal by hydrofluoric acid, uranium and thorium were separated from tantalum using cation exchange resin column in 0.5M hydrofluoric –0.65M boric acid media. Both of the yields for uranium and thorium during separation were above 95% and the remaining amount of tantalum be lowered below 400 ng.  相似文献   

18.
Summary The determination of thallium in biological materials sometimes cause problems because of the low concentrations of this toxic element. In the present work a method is described which optimizes the parameters affecting the specificity and sensitivity of the radiochemical NAA of thallium in biological samples. High thermal neutron flux, complete decomposition of the organic matter by pressurized digestion, TlI precipitations, liquid extraction of HTlBr4 and La(OH)3 scavenging purification are the steps leading to the final homogeneous preparation of Tl2CrO4 for -activity measurement. The method was applied to various materials as bovine liver, bone and nails. Good agreement was found between certified and determined thallium concentrations of the reference material CRM 176. The chemical yield comes to about 80%, with low deviations. The sensitivity of the method is about 10–3 g/g, the standard deviations being in the range of 3.6% (CRM 176), 14% (bovine liver), and 17% (bone). Detailed working instructions are given.  相似文献   

19.
We determined uranium in silicate materials such as standard rocks and a meteorite by radiochemical neutron activation analysis. After activation with a cadmium cover, samples were subjected to radiochemical separation of uranium immediately. The gamma-ray intensity of239U was measured with a planar type pure germanium detector system. Our data are mostly consistent with the literature or reported values. Compared with a non-destructive method, the present method was found to improve the sensitivity by at least a factor of ten. Several errors which might be involved in our RNAA procedures were examined and their degrees were evaluated.  相似文献   

20.
A method for the continuous on-stream determination of trace concentrations of uranium and thorium in flowing streams is developed. The 14 MeV neutron generator was used for irradiation and the delayed neutron counting technique was employed in counting the induced neutron activity. The dependence of the minimum detectable concentration on the irradiation, decay and counting times, liquid flow-rate and the background was studied. At optimal conditions, uranium and thorium concentrations were determined down to 20 and 100 ppm, respectively. The interference of the neutron emitting nuclide17m O was reduced to an insignificant level by optimizing the decay time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号