首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Surface-enhanced Raman scattering(SERS) is a molecular specific spectroscopic technique that amplifies the Raman signal of absorbed molecules for up to 1010times. Over the past decades, SERS substrates experienced rapid growth, resulting in excellent development for SERS analysis. Because the surface plasmonic resonance coupling between individual materials can form a "hotspot" region to maximize the Raman signal, among many substrate construction strategies, self-assembly attracts more attention in constructing superstructures with strong, uniform and stable SERS activity. In addition, a number of plasmon-free nanomaterials with appropriate superstructures samely show enhanced SERS activity, which is primarily attributed to the formation of the optical resonator. This review aims to provide a scientific synopsis on the progress of self-assembled superstructures for SERS and ignite new dis˗ coveries in the SERS platform, as well as SERS applications in various fields.  相似文献   

3.
Porphyrins bearing four urea-linked dodecyl groups (3a) or four urea-linked triethoxysilylpropyl groups (3TEOS) at their peripheral positions were synthesized. 3a tends to assemble into a sheetlike two-dimensional structure due to the predominant hydrogen-bonding interaction among the urea groups and acts as a moderate gelator of organic solvents. On the other hand, its Cu(II) compelx (3a.Cu) tends to assemble into a fibrous one-dimensional structure due to the predominant porphyrin-porphyrin pi-pi stacking interaction and acts as an excellent gelator of many organic solvents. 3TEOS and 3TEOS.Cu, which also act as gelators, afforded similar superstructures as those of 3a and 3a.Cu, respectively, and as evidenced by SEM and TEM observations and XRD measurements, the original superstructures could be precisely immobilized by in situ sol-gel polycondensation of the triethoxysilyl groups. The TEM images of 3a gels and 3TEOS gels after sol-gel polycondensation showed a fine striped structure, the periodical distance of which was either 2 or 4 nm. X-ray crystallographic analysis of a single crystal obtained from a reference porphyrin bearing four urea-linked butyl groups revealed that there are two different porphyrin-stacked columns in the crystal and both the 2 nm distance and the 4 nm distance can appear, depending on the observation tilting angle. The hybrid gel prepared from 3TEOS.Cu by sol-gel polycondensation showed unique physicochemical properties such as a high sol-gel phase-transition temperature (>160 degrees C), sufficient elasticity, high mechanical strength, etc. Thus, the present study has established new concepts for molecular design of porphyrin-based gelators on the basis of cooperative and/or competitive actions of hydrogen-bonding and pi-pi stacking interactions and for immobilization of their superstructures leading to development of new functional organic/inorganic hybrid materials.  相似文献   

4.
We report new hybrid organic-inorganic materials, based on macrocyclic receptors 1-3 self-organized in tubular superstructures prepared by sol-gel process. Fourier transform infrared (FTIR) and NMR spectroscopic analyses demonstrate that the self-organization by hydrogen bonding of organogel superstructures of 2 and 3 were preserved in the hybrid materials throughout the sol-gel process. The molecular arrangement of heteroditopic receptors defines a particularly attractive functional transport device for both cation (tubular macrocycles) and anion (sandwich-urea) directional-diffusion transport mechanism in the hybrid membrane material. This system has been employed successfully to design a solid dense membrane, functioning as an ion-powered adenosine triphosphate (ATP(2)(-)) pump, and illustrates how a self-organized hybrid material performs interesting and potentially useful functions.  相似文献   

5.
Metal–organic frameworks (MOFs) are among the most attractive porous materials known today, exhibiting very high surface areas, tuneable pore sizes and shapes, adjustable surface functionality, and flexible structures. Advances in the formation of MOF crystals, and in their subsequent assembly into more complex and/or composite superstructures, should expand the scope of these materials in many applications (e.g., drug delivery, chemical sensors, selective reactors and removal devices, etc.) and facilitate their integration onto surfaces and into devices. This Concept article aims to showcase recently developed synthetic strategies to control the one‐, two‐ and three‐dimensional (1‐, 2‐ and 3D) organisation of MOF crystals.  相似文献   

6.
The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).  相似文献   

7.
(3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.  相似文献   

8.
Inorganic polymers are relatively unexplored because the efficient formation of macromolecular chains from atoms of transition metals and main group elements has presented a synthetic challenge. Nevertheless, these materials offer exciting opportunities for accessing properties that are significantly different from and which therefore complement those available with the well‐established organic systems. Inorganic block copolymers are of particular interest for the generation of functional, nanoscale supramolecular architectures and hierarchical assemblies using self‐assembly processes. This article focuses on research in my group over the past decade, which has targeted the development of new and controlled routes to inorganic polymers and their subsequent use in forming supramolecular materials as well as studies of their properties and applications. The use of ring‐opening polymerization (ROP) and transition‐metal‐catalyzed polycondensation approaches are illustrated. Controlled ROP procedures have been developed that allow access to polyferrocene block copolymers that self‐assemble into interesting nanoscopic architectures such as cylinders and superstructures such as flowers. The future prospects for inorganic polymer science are discussed, and a growing emphasis on the study of supramolecular inorganic polymeric materials is predicted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 179–191, 2002  相似文献   

9.
Organically substituted metal alkoxides can be prepared by reaction of the parent alkoxides with complexing organic compounds. The chemical and structural consequences of such substitutions are discussed in this article. Examples are given showing how functional organic moieties, such as polymerizable groups, can be incorporated into sol-gel materials via the complexing ligands. Major structural differences between silica-based and metal-based hybrid materials originate from the different charge/coordination number ratios of silicon and most metals. This results in a high tendency for the molecular building blocks to aggregate. In many cases, metal oxide clusters are formed which are capped by the organic ligands. Such surface-modified clusters are themselves very valuable condensed matter units for materials syntheses.  相似文献   

10.
11.
For the first time, temperature-induced phase transitions upon heating and cooling an aqueous solution that contained oppositely charged polyelectrolyte and surfactant mixtures was observed. The phase transition from micelles to vesicles, then to the coexistence of vesicles and superstructures that have the morphology of melon seeds, and finally to precipitates was determined by means of turbidity measurements and transmission electron microscopy images. These phase transitions were shown to be reversible and reproducible after several heating and cooling cycles were performed on the same sample. The novel observations for the temperature-induced phase transition from primary aggregates, such as micelles, to superstructures (i.e., vesicles) should provide new understanding for surfactant sciences, and in particular for self-assembled amphiphilic systems.  相似文献   

12.
Stepwise self-assembly of DNA tile lattices using dsDNA bridges   总被引:1,自引:0,他引:1  
The simple helical motif of double-strand DNA (dsDNA) has typically been judged to be uninteresting for assembly in DNA-based nanotechnology applications. In this letter, we demonstrate construction of superstructures consisting of heterogeneous DNA motifs using dsDNA in conjunction with more complex, cross-tile building blocks. Incorporation of dsDNA bridges in stepwise assembly processes can be used for controlling length and directionality of superstructures and is analogous to the "reprogramming" of sticky-ends displayed on the DNA tiles. Two distinct self-assembled DNA lattices, fixed-size nanoarrays, and extended 2D crystals of nanotracks with nanobridges, are constructed and visualized by high-resolution, liquid-phase atomic force microscopy.  相似文献   

13.
The interfacing study of biopolymer and supramolecular chemistry enables a better understanding of fundamental biochemical processes and the creating of new high-performance biomaterials. In this review, we introduced an "in vivo self-assembly" strategy which means in situ construction of functional self-assembled superstructures in specific physiological or pathological conditions in cell, tissue or animal levels that exhibit diverse biomedical effects. By using this strategy, unexpected phenomena and insights, e.g,assembly/aggregation induced retention(AIR) effect have been demonstrated where the self-assembled nanostructures showed extraordinary enhanced accumulation and retention of therapeutics in targeted sites.  相似文献   

14.
肖帆  崔元靖  钱国栋 《应用化学》2018,35(9):1113-1125
金属-有机框架材料(metal-organic frameworks,MOFs)是一类由金属离子或金属离子簇与有机配体自组装而成的杂化多孔材料。 极高的比表面积和孔隙率,组成和结构可调节等特点赋予该材料灵活的设计性和丰富的功能性。 金属-有机框架材料的金属离子、有机配体和装载的客体分子等皆可作为发光中心,并能对离子或小分子产生特异性荧光响应,因此在荧光探测方面有广泛应用。 本文主要综述了近年来金属-有机框架材料在荧光探测方向的研究进展以及应用前景。  相似文献   

15.
Hybrid films of conjugated oligomers and gold nanoparticles have been fabricated by a coordination approach on the surface of gold nanoparticles. This method facilitates mild linkage of the oligomer/nanoparticle layers in ambient conditions, which provides a general route for preparation of organic/inorganic interlayer superstructures. Characterization of the as-obtained hybrid film has been carried out by UV-vis absorption, fluorescence spectroscopy, and atomic force microscopy (AFM). The hybrid film exhibits dramatic changes in both optical and photovoltaic properties upon encapsulation of fullerene. A photoelectrical application is presented by taking electrochemical measurements of the self-assembled film. The results reveal potential technological uses in photovoltaic devices.  相似文献   

16.
Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.  相似文献   

17.
Janus hollow silica spheres with an asymmetric shell are synthesized by self-assembled sol-gel process at an emulsion interface, and desired materials can be preferentially laden inside the cavities from their surroundings.  相似文献   

18.
采用自组装形成的芘纳米结构作为模板,成功地制备了柔软的球状和长方体状氧化硅中空结构.当不同量的芘在十六烷基三甲基溴化铵(CTAB)溶液中自组装时,产生的自组装结构展现出明显的从球状到长方体状的形貌变化.这些结构被用作氧化硅前驱体溶胶-凝胶反应的模板,获得了球状和长方体状氧化硅/芘复合结构.通过乙醇除去模板后,生成了柔软的球状(直径约为400nm)和长方体状(长为0.5—2.5μm)的氧化硅中空结构.这些结果展现了采用有机纳米结构作为模板来合成无机中空结构的优势:合成简便、结构多样以及结构形貌的灵活可控.  相似文献   

19.
The interfacing study of biopolymer and supramolecular chemistry enables a better understanding of fundamental biochemical processes and the creating of new high-performance biomaterials. In this review, we introduced an “in vivo self-assembly” strategy which means in situ construction of functional self-assembled superstructures in specific physiological or pathological conditions in cell, tissue or animal levels that exhibit diverse biomedical effects. By using this strategy, unexpected phenomena and insights, e.g, assembly/aggregation induced retention (AIR) effect have been demonstrated where the self-assembled nanostructures showed extraordinary enhanced accumulation and retention of therapeutics in targeted sites.  相似文献   

20.
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self‐assembled small‐molecule‐based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small‐molecule‐based inks were 3D‐printed, and their superstructures were refined by post‐printing hierarchical co‐assembly. Through spatial and temporal control of individual molecular events from the nano‐ to the macroscale, fine‐tuned macroscale features were successfully installed in the monoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号