首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New equations for the viscosity of concentrated double emulsions of core-shell droplets are developed using a differential scheme. The equations developed in the paper predict the relative viscosity (eta(r)) of double emulsions to be a function of five variables: a/b (ratio of core drop radius to shell outer radius), lambda(21) (ratio of shell liquid viscosity to external continuous phase viscosity), lambda(32) (ratio of core liquid viscosity to shell liquid viscosity), phi(DE) (volume fraction of core-shell droplets in double emulsion), and phi(m)(DE) (the maximum packing volume fraction of un-deformed core-shell droplets in double emulsion). Two sets of experimental data are obtained on the rheology of O/W/O (oil-in-water-in-oil) double emulsions. The data are compared with the predictions of the proposed equations. The proposed equations describe the experimental viscosity data of double emulsions reasonably well.  相似文献   

2.
The effect of dynamic surfactant adsorption on the stability of concentrated oil in water emulsions is studied. For this purpose, a modification of the standard Brownian dynamics algorithm (Ermak, D.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352) previously used to study the behavior of bitumen emulsions assuming instantaneous adsorption (Urbina-Villalba, G.; García-Sucre, M. Langmuir 2000, 16, 7975) was employed. In the present case, dynamic adsorption (DA) was accounted for through a time-dependent electrostatic repulsion between the drops, a function of the surfactant surface excess. The surface excess was allowed to evolve with time according to well-established analytical expressions which depend parametrically on the surfactant diffusion constant (Ds) and the total surfactant concentration (C). The investigation required appropriate incorporation of hydrodynamic interactions in concentrated systems. This was achieved through a novel methodology, which expresses the diffusion constant of each particle as a function of its local concentration and the shortest distance of separation between nearest neighbors. In model systems, the variation of the number of drops as a function of time was followed for different magnitudes of the apparent diffusion constant D(app) of the surfactant. For each of these values, the effect of C and the volume fraction of internal phase (phi) was considered. DA was found to influence emulsion stability appreciably at moderately high phi. In this case, the average collision time between drops is comparable to the time required for the occurrence of a substantial surfactant adsorption, but the interdrop separation is sufficiently large to prevent a considerable slowdown of particle movement due to hydrodynamic interactions.  相似文献   

3.
A study of the emulsification of silicone oil and water in the presence of partially hydrophobic, monodisperse silica nanoparticles is described. Emulsification involves the fragmentation of bulk liquids and the resulting large drops and the coalescence of some of those drops. The influence of particle concentration, oil/water ratio, and emulsification time on the relative extents of fragmentation and coalescence during the formation of emulsions, prepared using either batch or continuous methods, has been investigated. For batch emulsions, the average drop diameter decreases with increasing particle concentration as the extent of limited coalescence is reduced. Increasing the oil volume fraction in the emulsion at fixed aqueous particle concentration results in an increase in the average drop diameter together with a dramatic lowering of the uniformity of the drop size distribution as coalescence becomes increasingly significant until catastrophic phase inversion occurs. For low oil volume fractions (phi(o)), fragmentation dominates during emulsification since the mean drop size decreases with emulsification time. For higher phi(o) close to conditions of phase inversion, coalescence becomes more prevalent and the drop size increases with time with stable multiple emulsions forming as a result.  相似文献   

4.
The stability and phase behavior of acrylamide-based emulsions, prepared with surfactants consisting of lipophilic Span80 and hydrophilic OP10, before or after polymerization were investigated. The research results indicated that the phase separation behavior of the W/O-type emulsions is related to the toluene/water ratio. When the water volume fraction was larger, the phase separation mechanism was mainly a penetration of aqueous molecules from the dispersed-phase droplets. When the water volume fraction was smaller, the phase separation mechanism was mainly a sedimentation of the separated aqueous droplets. At a fixed toluene/water ratio, the emulsion stability and the emulsion type are related not only to the ratio of the two surfactants but also to the acrylamide concentration, and the effect of increasing acrylamide concentration on the character of the emulsions is similar to that of increasing OP10 mass fraction (increasing HLB value), which determines the corresponding relationship between acrylamide concentration and HLB value in the most stable emulsion system. To obtain the most stable emulsion at a fixed acrylamide concentration, the emulsion with higher acrylamide concentration needs a lower HLB value for the emulsion systems.  相似文献   

5.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

6.
A high volume fraction silica stabilized w/o emulsion with small droplet size ( approximately 3 μm) has been prepared using a commercially available hydrophobic silica. Addition of hydroxypropyl cellulose to the dispersed aqueous phase was found to improve the monodispersity of the emulsion by suppressing the production of larger droplets. The droplet size distribution showed complex behavior as the silica concentration was varied, which was explained using a simple kinetic argument. The effect of varying the acidity and ionic strength of the internal water phase was investigated. It was found that the presence of strong acid or strong alkali in the internal aqueous phase increased the gelation of the emulsions by promoting flocculation. This could be explained by acid- and alkali-catalyzed cleavage of surface siloxane groups increasing the number of surface silanol groups. If emulsions of strong acid and strong alkali were mixed, substantial additional gelation (again caused by flocculation) occurred. A possible explanation, preferred by the author, was an electrostatic one involving the interaction of dipoles in close proximity in the flocculated emulsion. Copyright 1999 Academic Press.  相似文献   

7.
Here, we investigate water-in-oil (W/O) emulsions that are stabilized by polystyrene latex particles with sulfate surface groups. The particles, which play the role of emulsifier, are initially contained in the disperse (water) phase. The existence of such emulsions formally contradicts the empirical Bancroft rule. Theoretical considerations predict that the drop diameter has to be inversely proportional to the particle concentration, but should be independent of the volume fraction of water. In addition, there should be a second emulsification regime, in which the drop diameter is determined by the input mechanical energy during the homogenization. The existence of these two regimes has been experimentally confirmed, and the obtained data agree well with the theoretical model. Stable W/O emulsions have been produced with hexadecane and tetradecane, while, in the case of more viscous and polar oils (soybean and silicone oil), the particles enter into the oily phase, and Pickering emulsions cannot be obtained. The formation of stable emulsions demands the presence of a relatively high concentration of electrolyte that lowers the electrostatic barrier to particle adsorption at the oil-water interface. Because the attachment of particles at the drop surfaces represents a kind of coagulation, it turns out that the Schulze-Hardy rule for the critical concentration of coagulation is applicable also to emulsification, which has been confirmed with suspensions containing Na(+), Mg(2+), and Al(3+) counterions. The increase of the particle and electrolyte concentrations and the decrease of the volume fraction of water are other factors that facilitate emulsification in the investigated system. To quantify the combined action of these factors, an experimental stability-instability diagram has been obtained.  相似文献   

8.
Viscosity of emulsions: influence of flocculation   总被引:1,自引:0,他引:1  
  相似文献   

9.
We have investigated the formation, drop sizes, and stability of emulsions prepared by hand shaking in a closed vessel in which the emulsion is in contact with a single type of surface during its formation. The emulsions undergo catastrophic phase inversion from oil-in-water (o/w) to water-in-oil (w/o) as the oil volume fraction is increased. We find that the oil volume fraction required for catastrophic inversion exhibits a linear correlation with the oil-water-solid surface contact angle. W/o high internal phase emulsions (HIPEs) prepared in this way contain water drops of diameters in the range 10-100 μm; emulsion drop size depends on the surfactant concentration and method of preparation. W/o HIPEs with large water drops show water separation but w/o HIPEs with small water drops are stable with respect to water separation for more than 100 days. The destabilization of the w/o HIPEs can be triggered by either evaporation of the oil continuous phase or by contact the emulsion with a solid surface of the "wrong" wettability.  相似文献   

10.
Stability and rheological properties of concentrated emulsions (including those for manufacture of vitamin microcapsules) can be related to elementary coalescence acts and adhesion of emulsion drops interacting through thin layers (microscopic emulsion films) of a dispersion medium

A new procedure was used for measuring the adhesion force fa between two drops of n-heptane in polymer solutions and lifetime τ of the drops in the contacts depending on the volume concentration C of the polymer, time of formation tf of adsorption layers, temperature T, capillary pressure Pc in the film, surface area S of the film, and on addition of acetone and tannin. The molecular mechanism of the interaction between adsorption layers of polymers and of the process of film destruction is discussed on the basis of the relationships obtained for interaction free energy Δ Fa, activation energy E, destruction activation volume δ and physico-chemical parameters.  相似文献   

11.
We present extensive molecular dynamics simulations of the ion distributions for DNA duplexes and DNA clusters using the Amber force field with implicit water. The distribution of ions and the electrostatic energy of ions around an isolated DNA duplex and clusters of DNA duplexes in different salt (NaCl) concentrations over the range 0.2-1.0 mol/L are determined on the basis of the simulation results. Using the electrostatic energy profile, we determine a local net charge fraction phi, which is found to increase with increasing of salt concentration. For DNA clusters containing two DNA duplexes (DNA pair) or four DNA duplexes, phi increases as the distance between the duplexes decreases. Combining this result with experimental results for the dependence of the DNA melting temperature on bulk salt concentration, we conclude that for a pair of DNA duplexes the melting temperature increases by 5-10 K for interaxis separations of 25-40 A. For a cluster of four DNA duplexes, an even larger melting temperature increase should occur. We argue that this melting temperature increase in dense DNA clusters is responsible for the cooperative melting mechanism in DNA-linked nanoparticle aggregates and DNA-linked polymer aggregates.  相似文献   

12.
氨法乳剂在微粒高感中起着重要的作用,PA改性胶只能适用于中性法高感乳剂沉降。寻求适用于氨法乳剂制备时所用的改性明胶(GGC型)具有重要的意义。本文研究了多种改性明胶的合成。取代度的测定,沉降条件和复溶性能,沉降过程中明胶及卤化银的回收率以及改性明胶卤化银乳剂的感光性能等。研究结果表明,GGC型改性明胶具有以下的优点:取代度高。沉降诱发期短,沉降的pH范围窄,卤化银的回收率高。在用作氨法乳剂沉降剂时,GGC改性胶远比PA胶优异,表现在:耗酸量少和感光度高。  相似文献   

13.
Some aspects of DLVO and non-DLVO forces in colloidal systems are over-viewed. The influence of long range interactions on some kinetic properties of dispersions, as Brownian diffusion, is discussed. It is shown, both theoretically and experimentally, that the electrostatic repulsion increases the collective diffusivity. The film stratification and oscillatory structure forces in colloidal suspensions are considered within the framework of an uniform approach The presence of small colloidal species (e. g. micelles or polymer molecules) may lead to several maxima and minima in the disjoining pressure isotherm. The particular case of interacting emulsion droplets is examined accounting for the interfacial deformability. The droplet deformation acts as a soft repulsion but affects also the remaining contributions to the interaction energy due to changes of the droplet shape. A general procedure for calculating the inter-droplet interaction energy, as well as the equilibrium film radius and thickness in a doublet of droplets, is suggested. The energy of interaction between charged colloidal particles, due to correlations of the density fluctuations in the electric double layer is also studied. It is found that this effect may lead to attraction greater than the van der Waals contribution, especially when multivale counter ions are present.  相似文献   

14.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   

15.
通过测定药物液滴的平均粒径和Zeta电位研究了体系pH值、 乳化温度和电解质离子对乳化剂三苯乙烯基苯酚聚氧乙烯醚磷酸酯三乙醇胺盐(SCP)稳定的异丙甲草胺水乳剂稳定性的影响. 结果发现, 体系的pH值影响SCP分子在水中的电离能力, 当pH=9时, SCP完全电离, 能为液滴提供较大的静电稳定作用, 水乳剂稳定性最好; 乳化温度低时, SCP分子向液滴界面扩散慢, 且舒展不完全, 液滴所带负电荷较少, 水乳剂稳定性差; 温度升高后, 水相黏度减小, 布朗运动加剧, 液滴碰撞合并几率增大, 且SCP分子热运动增强, 易从界面逃逸, 液滴间静电斥力减弱, 同时SCP亲水性下降, 水乳剂稳定性变差; 电解质离子会压缩界面双电层, 降低Zeta电位, 液滴带电量减少而聚结, 离子浓度越大, 电荷数越大, 水乳剂稳定性越差. 在相同的离子浓度下, 水合半径小的Ca2+压缩双电层能力强于Mg2+, 添加Ca2+后水乳剂稳定性更差.  相似文献   

16.
The spontaneous time evolution of systems containing N colloidal particles (N = 12, 24, 100) in a spherical cell of volume V at a constant volume fraction φ=0.1 was studied by a molecular dynamics method in the NVT ensemble. The starting velocities of the particles are allocated according to the Maxwell distribution at T=273 K.

Pairwise interaction of the particles was specified by molecular, electrostatic and elastic forces. The changes in the potential energy of the systems were calculated during the establishment of dynamic equilibrium. Coagulation takes place at sufficiently high values of the Hamaker constant. The value of the coefficient of Brownian diffusion, which is calculated from the half-time of coagulation, is found to be close to the known value for aqueous dispersions. The inclusion of electrostatic forces prevents coagulation.

The results obtained are in agreement with those obtained using theories of aggregate formation. Some structural characteristics of aggregates and stable systems are discussed.  相似文献   


17.
We study the spontaneous size selection in lyotropic cholesteric (W/O) and thermotropic nematic (O/W) liquid crystal emulsions. The droplet sizes have been characterized by dynamic light scattering, which indicates a narrow monomodal distribution of droplets achieved spontaneously even without emulsion filtration. Anchoring of the director, provided by the chosen surfactant on the interface, may generate a topological defect inside the droplet. Below the critical radius R = K/W, determined by the ratio of Frank elastic and the surface anchoring constants, the effective anchoring strength is weak and droplets are not topologically charged; this allows them to coalesce freely, depleting the size distribution in this range. Large droplets possess a topological charge of +1 and present a high elastic energy barrier for pair coalescence; the resulting size distribution is skewed, with R > R, and effectively frozen.  相似文献   

18.
The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented.  相似文献   

19.
Some factors in the preparation of triple Janus emulsions in a single-step bulk process were investigated using optical microscopy. The emulsions consisted of water, O.097 weight fraction, a commercial surfactant, Tween 80, 0.03 weight fraction, a vegetable oil (VO), 0.18 weight fraction, and a silicone oil (SO), 0.72 weight fraction. A surprising connection was found between the state of the compounds prior to mixing and the final morphology as well as stability of the emulsion. Separately adding the compounds or with the surfactant dissolved in the vegetable oil, prior to mixing, did not result in a Janus emulsion. Instead, simpler emulsions with limited stability were attained even with prolonged mixing. Storing the compounds together without mixing for two days followed by mixing resulted in a Janus emulsion in which the (VO + SO)/W/VO drops were more sparsely populated with Janus drops, and emulsion stability was limited. Finally, preparing the emulsion from the aqueous surfactant solution and the two oils gave a (VO + SO)/W/VO/SO emulsion with the W drops heavily populated by Janus drops and with improved stability.   相似文献   

20.
Traditionally, emulsions have been defined as consisting of two liquids, of which one is dispersed in the other as macroscopic drops, stabilized by mono‐molecular layer of surfactant at the interface. However, a large majority of commercial emulsions are more complex than so and the added elements are essential for the properties of the emulsions including their stability.

With this in mind, this treatment of emulsions is divided into emulsions with mono‐layers and multilayers at the interface. In addition, additional elements in emulsions are described; such as lyotropic liquid crystals, vesicles, microemulsion droplets and solid particles, and their potential influence on the emulsion properties is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号