首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excess enthalpies for binary mixtures (S-fenchone + ethanol/benzene/cyclohexane/carbon tetrachloride) were measured over the whole concentration at T = 298.15 K. The experimental results were compared with the values obtained from the UNIFAC, COSMO-RS and regular solution theory. Excess enthalpies of binary mixtures of R-fenchone and S-fenchone in ethanol, benzene, and cyclohexane solution at different specified mole fractions of fenchone have been measured under the same conditions. With the decreasing of the specified mole fraction of fenchone in different solutions, the excess enthalpies of mixing of chiral orientated solutions increased and became close to zero. Results were compared with those of chiral limonene in ethanol solution. Pair interaction energies were also investigated.  相似文献   

2.
Taylor dispersion technique was used for measuring mutual diffusion coefficients of sodium alginate aqueous solutions at T = 298.15 K, by using as carrier stream solution both pure water and solutions of this polyelectrolyte at a slightly different concentration. The limiting values found at infinitesimal ionic strength, D0, were determined by extrapolating to c  0. These studies were complemented by molecular mechanics calculations. From the experimental data, it was possible to estimate both the limiting conductivity and the tracer diffusion coefficient values for the alginate anion, and the hydrodynamic radius of the sodium alginate (NaC6H7O6), as well as to discuss the influence of the kinetic, thermodynamic and viscosity factors on the diffusion of sodium alginate in aqueous solutions at finite concentrations. Thus, the aim of our innovative research is to contribute to a better understanding of the structure and the thermodynamic behavior of these polymeric systems in solution and supplying the scientific and technological communities with data on these important parameters in solution transport processes.  相似文献   

3.
Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm?3, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager–Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D11, D22, D12, and D21) for aqueous solutions containing NiCl2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl2 in different media.  相似文献   

4.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

5.
6.
7.
The speed of sound and density measurements in water, methanol, and benzene solutions for the solutes PEG-400, PEG-1000, and PEG-4000 at T = 298.15 K (0.05 to 0.5 mol · kg−1) are reported. The data obtained are used to calculate thermodynamic parameters such as adiabatic (isentropic) compressibility of solutions (βad), apparent molar volume (ϕV) and apparent molar compressibility (ϕK) for solute molecules in all the solvent media. The limiting partial molar volume (ϕV) and limiting partial molar compressibility (ϕK) of solute molecules are used to estimate volume of transfer and compressibility of transfer for PEG molecules from methanol to aqueous and benzene to aqueous media. The high observed negative (ϕK) values in methanol are interpreted in terms of breakdown of one-dimensional H-bonded structure of methanolic molecules. The (ϕK) values observed in water although negative but of small magnitude as compared to salts in water. Attempt is made to estimate hydration number for these molecules in aqueous solutions by applying Shiio’s method and it is observed that PEG-4000 is hydrated most. These results are discussed in terms of solute–solvent and hydrophobic interactions and effects due to conformational characteristic of high molecular weight glycol molecules.  相似文献   

8.
Values of the enthalpy of dilution were measured for l-prolinol in pure water and N,N-dimethylformamide (DMF) aqueous solutions with various mass fractions of DMF at T = 298.15 K using a flow-mixing microcalorimeter. A pseudo phase equilibrium model was proposed to simplify the complex aggregation equilibrium and interpret the abnormality in the dilution enthalpy, which together with the McMillan–Mayer approach was used to fit the experimental data to obtain the enthalpic pairwise interaction coefficients and the molar aggregation enthalpies of l-prolinol in DMF aqueous solutions. The results are discussed in terms of the hydrophobic interaction and the interactions between the solvated solutes.  相似文献   

9.
10.
11.
12.
Diffusion coefficients of the Fe2(SO4)3)/water system at T = 298.15 K and at concentrations between 0.050 mol · dm−3 and 0.200 mol · dm−3 have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell uses an open-ended capillary method. A conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries at recorded times. These data are discussed on the basis of the Onsager–Fuoss model. The diffusion of Fe2(SO4)3 is clearly affected by the Fe (III) hydrolysis. These data permit us to have a better understanding of the structure of such systems and the thermodynamic behaviour of ferric sulphate in different media.  相似文献   

13.
14.
Densities of amino acids in aqueous and in aqueous electrolyte solutions have been measured by a high precision vibrating tube digital densitometer at T = 298.15 K under atmospheric pressure. The investigated systems contained amino acids of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) and cyclic glycylglycine (c(GG)) with electrolytes of potassium chloride (KCl), potassium bromide (KBr) and potassium acetate (KAc). In this series of measurements, the aqueous samples were prepared with various concentrations of the amino acids, up to saturated conditions, and over salt concentrations from 1 to 4 M. The density increments resulting from the addition of the different model compounds of amino acids and the ionic salts were investigated, respectively. An empirical linear combination equation with an augmented term to account the interactions between amino acid and ionic salt was used to quantitatively correlate the experimental densities over the entire concentration ranges.  相似文献   

15.
The enthalpies of solution in water, ΔsolHm, of some small peptides, namely the amides of five N-acetyl substituted amino acids of glycine, l-alanine, l-proline, l-valine, l-leucine and two cyclic anhydrides of glycine and l-sarcosine (diketopiperazines), were measured by isothermal calorimetry at T = (296.84, 306.89, and 316.95) K. The enthalpies of solution at infinite dilution at T = 298.15 K were derived and added to the enthalpies of sublimation, ΔsubHm, at the same temperature, to obtain the corresponding solvation enthalpies at infinite dilution, ΔsolvHm. Moreover, the partial molar heat capacities at infinite dilution at T = 298.15 K, Cp,2, were calculated by adding molar heat capacities of solid small peptides, Cp,m(cr), to the ΔsolCp,m values obtained from our experimental data. CH2 group contributions, in terms of solvation enthalpy and partial molar heat capacity, were −3.2 kJ · mol−1 and 89.3 J · K−1 · mol−1, respectively, in good agreement with the literature data. Simple additive methods were used to estimate the average molar enthalpy of solvation and partial molar heat capacity at infinite dilution for the 1/2CONH⋯CONH functional group in the small peptides. Values obtained were −46.7 kJ · mol−1 for solvation enthalpy and −42.4 J · K−1 · mol−1 for partial molar heat capacity, significantly lower than values obtained for the CONH functional group in monofunctional model compounds.  相似文献   

16.
The mixing enthalpies of N-glycylglycine with xylitol and their respective enthalpies of dilution in aqueous sodium chloride and potassium chloride solutions have been determined by using flow-mix isothermal microcalorimetry at the temperature of 298.15 K. These experimental results have been used to determine the heterotactic enthalpic interaction coefficients (hxy, hxxy, and hxyy) according to the McMillan–Mayer theory. It has been found that the heterotactic enthalpic pairwise interaction coefficients hxy between N-glycylglycine and xylitol in aqueous sodium chloride and potassium chloride solutions are negative and become less negative with an increase in the molality of sodium chloride or potassium chloride. The results are discussed in terms of solute–solute and solute–solvent interactions.  相似文献   

17.
18.
Non-ideal behaviour of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]; 1-octyl-3-methylimidazolium tetrafluoroborate [omim][BF4] and 1-butyl-3-methylimidazolium octylsulfate [bmim][C8OSO3] in ethylene glycol [HOCH2CH2OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K. For the purpose, volumetric properties such as excess molar volumes, VmE, apparent molar volumes, V?,i, partial molar volumes, V¯m,i, excess partial molar volumes, V¯m,iE, and their limiting values at infinite dilution, V?,i, V¯m,i, and V¯m,iE, respectively have been calculated from the experimental density measurements. The VmE results have been analyzed using the Prigogine–Flory–Patterson (PFP) theory. PFP theory has satisfactorily explained the volumetric behaviour of the binary mixtures. Refractive index measurements at 298.15 K have been used to calculate the deviations in refractive indices Δ?n and the deviation of molar refraction ΔxR from their respective ideal values. Refractive index results have been correlated with volumetric results, and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich–Kister polynomial equation to obtain the binary coefficients and the standard errors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号