首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, some new physicochemical properties of (2-methyl-2-butanol + heptane) are investigated using an acoustic method. Of clear interest to us is the study of the effect of branched structure of alcohol on association in mixtures with heptane and consequently, the effect of temperature and pressure on deviations from ideal solution behaviour. Thus, this work presents experimental properties and theoretical study of (2-methyl-2-butanol + heptane) as functions of temperature and pressure over the entire composition range. The densities and speeds of sound in (2-methyl-2-butanol + heptane) have been measured for temperatures ranging from (293 to 318) K under atmospheric pressure and under elevated pressures up to 101 MPa, respectively. The densities, heat capacities and appropriate excesses of these binaries were calculated for the same temperatures and for pressures up to 100 MPa. The acoustic method was applied in the calculations. The effects of pressure and temperature on the excess molar volume and the excess molar heat capacity of (2-methyl-2-butanol + heptane) are explained in terms of the influence of the molecular size and configuration of the alcohols on their self-association capability, packing effect, and the non-specific interactions between the 2-methyl-2-butanol and heptane basing on the results obtained from the modified ERAS model.  相似文献   

2.
The molar isobaric heat capacities of (methanol + 1-hexyl-3-methylimidazolium tetrafluoroborate) and (methanol + 1-methyl-3-octylimidazolium tetrafluoroborate) mixtures have been determined over the temperature range from 283.15 K to 323.15 K within the whole composition range. The excess molar heat capacities of investigated mixtures have been fitted to the Redlich–Kister equation at several selected temperatures. Positive deviations from the additivity of molar heat capacities have been observed in both examined systems. The results obtained have been discussed in terms of molecular interactions in binary mixtures.  相似文献   

3.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

4.
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg–Nissan and McAllister equations for viscosities of mixtures have also been examined.  相似文献   

5.
A group additivity method was developed to estimate standard enthalpies of formation and standard entropies at 298 K of linear radical and closed-shell, gaseous fluorocarbon neutrals containing four or more carbon atoms. The method can also be used to estimate constant pressure molar heat capacities of the same compounds over the temperature range 300 K to 1500 K. Seventeen groups and seven fluorine–fluorine interaction terms were defined from 12 fluorocarbon molecules. Interaction term values from Yamada and Bozzelli [T. Yamada, J.W. Bozzelli, J. Phys. Chem. A 103 (1999) 7373–7379] were utilized. The enthalpy of formation group values were derived from G3MP2 calculations by Bauschlicher and Ricca [C.W. Bauschlicher, A. Ricca, J. Phys. Chem. A 104 (2000) 4581–4585]. Standard entropy and molar heat capacity group values were estimated from ab initio geometry optimization and frequency calculations at the Hartree–Fock level using the 6-31G(d) basis set. Enthalpies of formation for larger fluorocarbons estimated from the group additivity method compare well to enthalpies of formation found in the literature.  相似文献   

6.
(Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl2) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl2, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.  相似文献   

7.
This report presents a new set of heat capacity data for the system piperazine {(PZ) + 2-amino-2-methyl-1-propanol (AMP) + water (H2O)}, measured using the differential scanning calorimetry technique, over the temperature range 303.2 K to 353.2 K and at fourteen (14) different concentrations in which the water mole fractions, x3’s, were fixed at 0.60, 0.70, 0.80, and 0.90. Heat capacity for the binary system {PZ (1) + AMP (2)} at x1 = 0.05, 0.10, 0.15, and 0.20 were, likewise, measured to generate parameters necessary in the Redlich–Kister-type model, which was used to estimate excess molar heat capacities. Such estimates were then used to predict the values of the molar heat capacity at the corresponding sets of temperature and concentration. The predicted values were subsequently compared against the measured values and the results are satisfactory.  相似文献   

8.
(Vapour + liquid) equilibrium (VLE) data are important for designing and modelling of process equipment. Since it is not always possible to carry out experiments at all possible temperatures and pressures, generally thermodynamic models based on equations of state are used for estimation of VLE. In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of VLE for the binary systems viz. (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol). The temperature range over which these models are valid is (353.2 to 458.2) K at atmospheric pressure. The average absolute deviation for the temperature output was in range 2% to 3.3%. The results were then compared with experimental data.  相似文献   

9.
(Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.  相似文献   

10.
The speed of sound in (heptane + dodecane) mixtures was measured over the whole concentration range at pressures up to 101 MPa and within the temperature range from (293 to 318) K. The density of (heptane + dodecane) was measured in the whole composition range under atmospheric pressure and at temperatures from (293 to 318) K. The densities and heat capacities of these binaries at the same temperatures were calculated for pressures up to 100 MPa from the speeds of sound under elevated pressures together with the densities and heat capacities at atmospheric pressure. The effects of pressure and temperature on the excess molar volume and the excess molar heat capacity are discussed.  相似文献   

11.
Vapour pressures of (1-chlorobutane  +  1-butanol, or 2-methyl-2-propanol) at several temperatures between T =  278.15 and T =  323.15 K were measured by a static method. Reduction of the vapour pressures to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich–Kister equation according to Barker’s method. For (1-chlorobutane  +  2-methyl-2-propanol) azeotropic mixtures with a minimum boiling temperature were observed over the whole temperature range.  相似文献   

12.
A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H2O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich–Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.  相似文献   

13.
(Vapour + liquid) equilibria data of (di-isopropyl ether + 1-butanol + benzene), (di-isopropyl ether + 1-butanol) and (1-butanol + benzene) have been measured at T = 313.15 K using an isothermal total pressure cell. Data reduction by Barker’s method provides correlations for the excess molar Gibbs energy using the Margules equation for the binary systems and the Wohl expansion for the ternary. The Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems reported here.  相似文献   

14.
Isothermal (vapour + liquid) equilibrium data for the ternary mixtures 1-butanol + n-hexane + 1-chlorobutane and 2-butanol + n-hexane + 1-chlorobutane have been studied with a recirculating still at T = 298.15 K. The experimental data were satisfactorily checked for thermodynamic consistency using the method of van Ness. Activity coefficients and excess Gibbs function have been correlated with the Wilson equation. The GE values obtained for the two ternary systems are very similar.  相似文献   

15.
Experimental excess molar enthalpies of the ternary systems {dibutyl ether (DBE) + 1-butanol + heptane} and the corresponding binary systems at T = 298.15 K and T = 313.15 K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and the ternary systems show endothermic character. The experimental data for the binary and ternary systems have been fitted using the Redlich–Kister equation, the NRTL and UNIQUAC models. The values of the standard deviation indicate good agreement between the experimental results and those calculated from the equations.  相似文献   

16.
(Liquid + liquid) equilibrium (LLE) data for {water + acrylic acid + (1-butanol, or 2-butanol, or 1-pentanol)} at T = 293.2 K, T = 303.2 K, and T = 313.2 K and atmospheric pressure (≈95 kPa) were determined by Karl Fischer titration and densimetry. All systems present type I binodal curves. The size of immiscibility region changes little with an increase in temperature, but increases according to the solvent, following the order: 2-butanol < 1-butanol < 1-pentanol. Values of solute distribution and solvent selectivities show that 1-pentanol is a better solvent than 1-butanol or 2-butanol for acrylic acid removal from water solutions. Quality of data was ascertain by Hand and Othmer-Tobias equations, giving R2 > 0.916, mass balance and accordance between tie lines and cloud points. The NRTL model was used to correlate experimental data, by estimating new energy parameters, with root mean square deviations below 0.0053 for all systems.  相似文献   

17.
The group method of data handling (GMDH) method was used to estimate (vapour + liquid) equilibrium (VLE) for the binary systems of (tert-butanol + 2-ethy1-1-hexanol) and (n-butanol + 2-ethy1-1-hexanol). Using this method, a new model was proposed, which is suitable for predicting the VLE data. In this publication, the proposed model was ‘trained’ before requested predictions. The data set was divided into two parts: 70% were used as data for ‘training’ (either 10 or 12), and 30% were used as a test set, which were randomly extracted from the database (either 14 or 16). After the training on the input–output process, the predicted values were compared with those of experimental values in order to evaluate the performance of the GMDH neural network method. The model values showed a very good regression with the experimental results.  相似文献   

18.
The excess molar enthalpies HmE, for the mixtures (N-methyl-2-pyrrolidinone + ethanol, or pentan-1-ol, or hexan-1-ol, or heptan-1-ol, or octan-1-ol, or nonal-1-ol, or decan-1-ol, or undecan-1-ol) at T=298.15 K and atmospheric pressure have been obtained using flow calorimetry. Excess molar volumes at T=298.15 K and atmospheric pressure have also been determined for (N-methyl-2-pyrrolidinone + nonal-1-ol, or decan-1-ol, or undecan-1-ol) from density measurements using a vibrating tube densimeter. The experimental results have been correlated and compared with the results from the Flory–Benson–Treszczanowicz (FBT) theory and from the Extended Real Associated Solution (ERAS) model. The ERAS model accounts free volume effects according to the Flory–Patterson model and additionally association effects between the molecules involved. For the mixtures studied here the association effects arise from the self association of an alkan-1-ol molecules and also the cross-association of the proton of the alkan-1-ol with carbonyl oxygen of N-methyl-2-pyrrolidinone (NMP) molecule. The parameters adjusted to the mixtures properties are two cross-association parameters and the interaction parameter responsible for the exchange energy of the van der Waals interactions. Self-association parameters of the alcohols and NMP are taken from the literature.  相似文献   

19.
Density, viscosity, refractive index, and heat of mixing measurements for {x1 1-butanol + (1 ? x1) 2-butanone} at T = 303 K were made over the whole concentration range. Data of the binary mixture were further used to calculate the viscosity and refractive index deviations, and excess molar enthalpy. The excess or deviation properties were fitted with the Redlich–Kister polynomial relation to obtain their coefficients and standard deviations. The construction of an adiabatic calorimeter useful in the neighbourhood of room temperature is described. Its performance was checked by measuring the heat of mixing for {x1 benzene + (1 ? x1) cyclohexane} over the whole concentration range at T = 298 K. Experimental results are within a standard deviation of 9 J · mol?1 of the accepted literature values.  相似文献   

20.
Excess molar enthalpies of (2- butanone  +  cyclohexane, or methylcyclohexane, or toluene, or chlorobenzene, or cyclohexanone) and excess molar heat capacities of (2- butanone  +  benzene, or toluene, or chlorobenzene, or cyclohexanone) were measured atT =  298.15 K. Aliphatic systems were endothermic and the chlorobenzene system was exothermic. On the other hand, the toluene system changed sign to be S-shaped similar to the benzene system reported by Kiyohara et al. The values of excess molar enthalpies of the present mixtures were slightly larger than the corresponding mixtures of cyclohexanone already reported. Excess molar heat capacities of aromatic systems were characteristically S-shaped for the mixture containing aromatics. The values of the present mixtures were less than the corresponding mixtures of cyclohexanone. The mixture (2-butanone  +  cyclohexanone) was endothermic forHmE and negative for Cp,mE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号