首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper reports a combined experimental and computational thermochemical study of 4-benzyloxyphenol. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p° = 0.1 MPa) molar enthalpy of combustion, , and of sublimation, , respectively, from which the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, were derived.For comparison purposes, the gas-phase enthalpy of formation of this compound was estimated by G3(MP2)//B3LYP calculations, using a set of gas-phase working reactions; the results are in excellent agreement with experimental data. G3(MP2)//B3LYP computations were also extended to the calculation of the gas-phase enthalpies of formation of the 2- and 3-benzyloxyphenol isomers. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies and, finally, O–H bond dissociation enthalpies.  相似文献   

3.
4.
Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.  相似文献   

5.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpy of sublimation, Delta(cr)(g)H(m)degrees, of the compound 2-chlorobenzophenone. For the other three compounds, the standard molar enthalpies of sublimation, at T = 298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapor pressures of these compounds, measured by the Knudsen-effusion technique. From the values of Delta(f)H(m)degrees and Delta(cr)(g)H(m)degrees, the standard molar enthalpies of formation of all the compounds, in the gaseous phase, Delta(f)H(m)degrees (g), at T = 298.15 K, were derived. These values were also calculated by using the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computational approach.  相似文献   

6.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.  相似文献   

7.
8.
The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase of seven isomers of fluoromethylaniline were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g) and HF.10H2O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of vaporization or sublimation of these compounds, also at T = 298.15 K, were determined using Calvet microcalorimetry, while the enthalpies of fusion of the solid compounds were determined by differential scanning calorimetry. The standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived from the former two experimental quantities. G3MP2//B3LYP calculations were performed for all possible fluoromethylanilines allowing the estimation of data for the isomers that were not studied experimentally. The Cox scheme was applied with two different approaches for the estimation of the standard molar enthalpies of formation of all the isomers studied, and this led to the conclusion that the literature values for the enthalpies of formation of the meta and para isomers of methylaniline seem to be not reliable. Further G3MP2//B3LYPs calculations on the methylaniline isomers yielded new values for the standard molar enthalpies of formation of the isomers of methylaniline, which have been tested under the Cox scheme, resulting in better estimates.  相似文献   

9.
10.
The standard (p = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T = 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, –(263.9 ± 4.6) kJ · mol−1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines.  相似文献   

11.
12.
13.
14.
A mass spectrometric study of saturated vapor over oxovanadium phthalocyanine showed the thermal stability and monomeric vapor composition of this compound. The molecular structure of oxovanadium phthalocyanine (VOPc) was determined using a combination of gas-phase electron diffraction (GED), mass spectrometry, and quantum chemical calculations. According to GED, the VOPc molecule has C4v symmetry. Experimental structural parameters are in good agreement with the parameters obtained by UB3LYP/cc-pVTZ calculations. The vanadium atom has a five-coordinated square-pyramidal geometry, being shifted above the plane of the four isoindole nitrogen atoms by 0.576(14) Å. The parameters of the square pyramid VN4 are r h1(V–N) = 2.048(7) Å, r h1(N···N) = 2.780(12) Å. The vanadium–oxygen bond length is r h1(V–O) = 1.584(11) Å. NBO analysis shows polar character of coordination bonds with significant covalent contribution and pronounced direct donation. X-ray crystallography and GED give different coordination bond lengths according to the different physical meaning of the parameters obtained by these methods. The enthalpy of sublimation [?H s o (593–678 K)] is 53.3 ± 0.8 kcal/mol.  相似文献   

15.
The standard molar enthalpy of sublimation of monoclinic cyclopentadienyltricarbonylmanganese, Mn(eta (5)-C 5H 5)(CO) 3, at 298.15 K, was determined as Delta sub H m (o)[Mn(eta (5)-C 5H 5)(CO) 3] = 75.97 +/- 0.37 kJ x mol (-1) from Knudsen effusion and Calvet-drop microcalorimetry measurements, thus considerably improving the very large inaccuracy (>10 kJ x mol (-1)) of the published data. The obtained value was used to assess the extension of the OPLS-based all-atom force field we previously developed for iron metallocenes to manganese organometallic compounds. The modified force field was able to reproduce the volumetric properties (density and unit-cell volume) of crystalline Mn(eta (5)-C 5H 5)(CO) 3 with a deviation of 0.6% and the experimentally determined enthalpy of sublimation with an accuracy of 1 kJ x mol (-1). The interaction (epsilon) and atomic-diameter (sigma) parameters of the Lennard-Jones (12-6) potential function used to calculate dispersion contributions within the framework of the force field were found to be transferable from iron to manganese.  相似文献   

16.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.  相似文献   

17.
A computational study has been carried out for xanthene and thioxanthene homologous derivatives with keto, hydroxyl, carboxyl, and carboxamide functional groups on position 9, contributing to the understanding of their energetics and reactivity. For that it is presented and compared with the molecular structures, the electrostatic potential energy maps, and the electronic properties of all these heteropolycyclic compounds. The estimation of the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was made only for the thioxanthydrol, thioxanthene-9-carboxylic acid, and thioxanthene-9-carboxamide using the experimental values available in the literature for the homologous compounds containing oxygen.  相似文献   

18.
The standard (p o = 0.1 MPa) molar energies of combustion, $ \Updelta_{\text{c}} H_{\text{m}}^{\text{o}} $ , for indole-2-carboxylic acid and indole-3-carboxaldehyde, in the crystalline state, were determined, at T = 298.15 K, using a static bomb combustion calorimeter. For both compounds, the vapour pressures as function of temperature were measured, by the Knudsen effusion technique, and the standard molar enthalpies of sublimation, $ \Updelta_{\text{cr}}^{\text{g}} H_{\text{m}}^{\text{o}} $ , at T = 298.15 K, were derived by the Clausius–Clapeyron equation. From the experimental results, the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of indole-2-carboxylic acid and indole-3-carboxaldehyde were derived. The results are analysed in terms of structural enthalpic increments.  相似文献   

19.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation in the condensed phase of all the fluoroanilines, with the exception of the 2,3,5-trifluoroaniline compound, were derived from the standard molar energies of combustion in oxygen at T = 298.15 K, measured by rotating bomb combustion calorimetry. Calvet high-temperature vacuum sublimation experiments were performed to measure their enthalpies of vaporization or sublimation. These experiments allowed the determination of the standard molar enthalpies of formation in the gaseous phase and at T = 298.15 K. These values are also compared with estimates based on G3MP2B3 and BP86/6-31+G(d) computations, which have been extended also to the fluoroaniline that was not studied experimentally. The results are in close agreement with a mean deviation of approximately 3 kJ.mol-1. The largest difference between experimental and G3MP2B3 values is found for the pentafluoroaniline (-7.0 kJ.mol-1). For the three monofluoroanilines, the composite approach has been used also to compute gas-phase acidities, electron and proton affinities, ionization enthalpies and N-H bond dissociation enthalpies. The computed values compare well with available experimental results supporting the new computed data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号