首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The limits of applicability of continuum flow models in the problem of the hypersonic rarefied gas flow over blunt bodies are determined by an asymptotic analysis of the Navier–Stokes equations, the numerical solution of the viscous shock layer equations and the numerical and asymptotic solution of the thin viscous shock layer equations for low Reynolds numbers. It is shown that the thin viscous shock layer model gives correct values of the skin friction coefficient and the heat transfer coefficient in the transitional to free-molecule flow regime. The asymptotic solutions, the numerical solutions obtained within the framework of different continuum models, and the results of a calculation by Direct Simulation Monte Carlo method are compared.  相似文献   

2.
All possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around blunt bodies in the two-layer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, Re, from low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. Together with the well-known models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows from the Navier-Stokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing inertial and pressure forces and boundary conditions on the unspecified free boundary (the shock wave) is found at Reynolds numbers, and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (k/Re)1/2 → 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the drag is thereby rigorously obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed by the thickness of the shock layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models are written in Dorodnitsyn--Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic and thermal characteristic; in the form of a single dependence on Re over the whole range of its variation from zero to infinity.

An efficient numerical method of global iterations, previously developed for solving viscous shock-layer equations, can be used to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)1/2 → 0 is satisfied in the case of small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the whole of the trajectory for the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere.  相似文献   


3.
Hypersonic flows of a viscous perfect rarefied gas over blunt bodies in a transitional flow regime from continuum to free molecular, characteristic when spacecraft re-enter Earth's atmosphere at altitudes above 90-100 km, are considered. The two-dimensional problem of hypersonic flow is investigated over a wide range of free stream Knudsen numbers using both continuum and kinetic approaches: by numerical and analytical solutions of the continuum equations, by numerical solution of the Boltzmann kinetic equation with a model collision integral in the form of the S-model, and also by the direct simulation Monte Carlo method. The continuum approach is based on the use of asymptotically correct models of a thin viscous shock layer and a viscous shock layer. A refinement of the condition for a temperature jump on the body surface is proposed for the viscous shock layer model. The continuum and kinetic solutions, and also the solutions obtained by the Monte Carlo method are compared. The effectiveness, range of application, advantages and disadvantages of the different approaches are estimated.  相似文献   

4.
The plane and axisymmetric problems of super- and hypersonic flow of a homogeneous viscous heat-conducting perfect gas over a blunt body are considered. Generalized viscous shock layer equations that take into account all the second-order effects of boundary-layer theory, i.e., the terms O(Re?1/2), are derived from the Navier–Stokes equations by the asymptotic method, and all the out-of-order third-order terms O(Re?1) and higher-order terms are also retained, except terms with second derivations in the marching coordinate (Re is Reynolds number, determined from the free-stream density and velocity the linear dimension, which is equal to the nose radius of the blunt Body, and the free-stream shear viscosity at the stagnation temperature). Thus, only the presence of terms with second derivatives in the marching coordinate, which specify the elliptical properties of the complete system of Navier–Stokes equations, distinguish it from the generalized viscous shock layer equations, which do not contain these terms. Slip and a temperature jump conditions on a body surface are presented with the same degree of accuracy, and generalized Rankine–Hugoniot conditions on a head shock, which take into account the effects of the viscosity and heat conduction, including their influence on the determination of the pressure, are derived. The incorrect and unfounded approximations used in preceding studies and the efficiency of iterative marching techniques for solving the generalized viscous shock layer equations, as well as the ability of the latter to provide a correct solution for the drag and heat-transfer coefficients in the transitional flow regime if the solution is constructed taking the slip and temperature jump on a surface and on a head shock into account, are noted.  相似文献   

5.
6.
In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non-similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this fundamental problem for the case of a constant heat flux boundary condition has remained unexplored in the literature. It was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.  相似文献   

7.
This study deals with boundary layer flow along the entire length of a stationary semi-infinite cylinder under a steady, accelerated free-stream. Considering flow at reduced dimensions, the no-slip boundary condition is replaced with a Navier boundary condition. Asymptotic series solutions are obtained for the shear stress coefficient in terms of the Bingham number that corresponds to prescribed values of both the slip coefficient and the index of acceleration. By investigating motion at small and large axial distances, the series solutions are presented. For flow in the intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the shear stress along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.  相似文献   

8.
This study deals with boundary layer flow along the entire length of a stationary semi-infinite cylinder under a steady, accelerated free-stream. Considering flow at reduced dimensions, the no-slip boundary condition is replaced with a Navier boundary condition. Asymptotic series solutions are obtained for the shear stress coefficient in terms of the Bingham number that corresponds to prescribed values of both the slip coefficient and the index of acceleration. By investigating motion at small and large axial distances, the series solutions are presented. For flow in the intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the shear stress along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.  相似文献   

9.
提出了以拟序扰动序列逼近N-S方程定解问题渐近解的一种方法。对N-S方程及其边界条件的渐近拟序扰动序列解进行了讨论,并应用此方法对球坐标系中的圆球绕流进行求解,改善了渐近展开匹配方法,使匹配函数更容易确定。改善后的阻力曲线与实测资料相比在雷诺数小于等于4×104以前完全吻合。  相似文献   

10.
Igor Vigdorovich 《PAMM》2011,11(1):605-606
Self-similar flows in a turbulent boundary layer when the free-stream velocity is specified as a power function of longitudinal coordinate are investigated. The self-similar formulation not only simplifies solving of the problem by reducing the equations of motion to ordinary differential equations but also provides a mean for formulating closure conditions. It is shown that for the class of flows under consideration that depend on three governing parameters the dimensionless mixing length is a function of the normalised distance from the wall and the exponent in the law specifying the free-stream velocity distribution in the outer region and a universal function of local Reynolds number in the wall region, the latter corollary being true even when the skin friction vanishes. In calculations this function is set to be independent of pressure gradient, which gives the results very close to experimental data. There exist four different self-similar flow regimes. Each regime is related to its similarity parameter, one of which is the well-known Clauser equilibrium parameter and the other three are established for the first time. In case of adverse pressure gradient when the exponent lies within certain limits, which depend on Reynolds number, the problem has two solutions with different values of the boundary layer thickness and skin friction, which points out the possibility of hysteresis in near-separating flow. Separation occurs not at the minimum value of the exponent that corresponds to the strongest adverse pressure gradient but at a higher one whose dependence on Reynolds number is calculated in the paper. The results of the theory are in good agreement with experimental data. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We study steady boundary value problems of nonlinear kinetic theory. Using a continuation argument based on the variation of the Knudsen number we derive a method for the construction of steady solutions of discrete velocity models in a slab. This method is readily transformed into a numerical code. In a preliminary numerical test case the numerical scheme turns out to yield solutions even for Knudsen numbers small enough to calculate with high precision the asymptotic flow field adjacent to a kinetic boundary layer. Thus, we are able to numerically simulate in a simplified situation the transition from a (mesoscopic) kinetic boundary layer to the (macroscopic) far field.  相似文献   

12.
In this paper, asymptotic expansions with respect to small Reynolds numbers are proved for the slow steady motion of an arbitrary particle in a viscous, incompressible fluid past a single plane wall. The flow problem is modelled by a certain boundary value problem for the stationary, nonlinear Navier-Stokes equations. The coefficients of these expansions are the solutions of various, linear Stokes problems which can be constructed by single layer potentials and corresponding boundary integral equations on the boundary surface of the particle. Furthermore, some asymptotic estimates at small Reynolds numbers are presented for the slow steady motion of an arbitrary particle in a viscous, incompressible fluid between two parallel, plane walls and in an infinitely long, rectilinear cylinder of arbitrary cross section. In the case of the flow problem with a single plane wall, the paper is based on a thesis, which the author has written under the guidance of Professor Dr. Wolfgang L. Wendland.  相似文献   

13.
研究了运动的粘性导电流体中可渗透收缩壁面上非稳态磁流体边界层流动,利用解析和数值方法对问题进行了研究,并考虑了壁面速度滑移的影响.提出了一个新的解析方法(DTM-BF),并将其应用于求解带有无穷远边界条件的非线性控制方程的近似解析解.对所有的解析结果和数值结果进行了对比,结果显示两者非常吻合,从而证明了DTM-BF方法的有效性.另外,对不同的参数,得到了控制方程双解和单解的存在范围.最后,分别讨论了滑移参数、非稳态参数、磁场参数、抽吸/喷注参数和速度比例参数对壁面摩擦、唯一解速度分布和双解速度分布的影响.  相似文献   

14.
The influences of Hall current and slip condition on the MHD flow induced by sinusoidal peristaltic wavy wall in two dimensional viscous fluid through a porous medium for moderately large Reynolds number is considered on the basis of boundary layer theory in the case where the thickness of the boundary layer is larger than the amplitude of the wavy wall. Solutions are obtained in terms of a series expansion with respect to small amplitude by a regular perturbation method. Graphs of velocity components, both for the outer and inner flows for various values of the Reynolds number, slip parameter, Hall and magnetic parameters are drawn. The inner and outer solutions are matched by the matching process. An interesting application of the present results to mechanical engineering may be the possibility of the fluid transportation without an external pressure.  相似文献   

15.
The three-dimensional flow of a chemically unstable viscous gas near a plane of symmetry of blunt bodies streamlined at the angle of attack, is considered. The investigation is carried out using a model of a thin, viscous shock layer. To a first approximation of the method of successive approximations for a uniform gas simple formulas are obtained for the distribution of the heat flux over the surface, referred to its value at the stagnation point. It is shown that for a chemically unstable gas the distribution of the heat flux along an ideally catalytic surface depends only slightly on the conditions prevailing within the incident flow, is determined mainly by the geometrical characteristics of the body, and is described quite satisfactorily by the formulas obtained. The accuracy of these formulas is determined by comparison with numerical computations carried out for bodies of various shapes, moving at different angles of attack along a planing trajectory of re-entry into the Earth's atmosphere, and during re-entry into the atmosphere at a constant velocity.  相似文献   

16.
考虑光滑区域上二维粘性湖方程在Navier边界条件下的无粘极限问题,证明了具有Navier边界条件粘性湖方程的边界层在Sobolev空间中是非线性稳定的,验证了具有较弱强度的边界层的渐近展开的合理性.  相似文献   

17.
Simplified Navier-Stokes equations are applied to analyze the flow of supersonic viscous gas at moderately large Reynolds numbers near the lateral surface of long bodies. Numerical integration of the equations is performed by the marching method, stabilizing in each step the solution of the nonstationary system of equations in the longitudinal coordinates. We consider the flow past cylinders and cones with a spherical blunt nose. We investigate the effect of the Reynolds number and the body shape on the flow field, the drag coefficient, and the heat flux. The numerical solutions of simplified and complete Navier-Stokes equations are compared.Translated from Vychislitel'naya Matematika i Matematicheskoe Obespechenie EVM, pp. 231–239, 1985.  相似文献   

18.
A method for direct numerical simulation of a laminar–turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier–Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton–Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar–turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.  相似文献   

19.
运用张量分析方法及修正双极坐标系,建立了轴承润滑流动所应满足的广义Reynolds方程.应用薄流层中的Navier-Stokes方程的渐近分析方法和张量分析工具,得到了两个非同心旋转圆柱之间粘性流动的基本流所应满足的方程.这个基本流可以表示为两个同心旋转圆柱之间的Taylor流加上一个扰动项,并且给出了数值计算例子.  相似文献   

20.
The subinertial internal Kelvin wave solutions of a linearized system of the ocean dynamics equations for a semi-infinite two-layer f-plane model basin of constant depth bordering a straight, vertical coast are imposed. A rigid lid surface condition and no-slip wall boundary condition are imposed. Some trapped wave equations are presented and approximate solutions using an asymptotic method are constructed. In the absence of bottom friction, the solution consists of a frictionally modified Kelvin wave and a vertical viscous boundary layer. With a no-slip bottom boundary condition, the solution consists of a modified Kelvin wave, two vertical viscous boundary layers, and a large cross-section scale component. The numerical solutions for Kelvin waves are obtained for model parameters that take account of a joint effect of lateral viscosity, bottom friction, and friction between the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号