首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper presents two new results in the domain of the elastoplastic buckling and post-buckling of beams under axial compression. (i) First, the tangent modulus critical load, the buckling mode and the initial slope of the bifurcated branch are given for a Timoshenko beam (with the transverse shear effects). The result is derived from the 3D J2 flow plastic bifurcation theory with the von Mises yield criterion and a linear isotropic hardening. (ii) Second, use is made of a specific method in order to provide the asymptotic expansion of the post-critical branch for a Euler-Bernoulli beam, exhibiting one new non-linear fractional term. All the analytical results are validated by finite element computations.  相似文献   

2.
As is well known, the elastic stability of shell structures under certain loading conditions is characterised by a severely unstable postbuckling behaviour. The presence of simultaneous buckling modes (‘competing’ modes corresponding to the same critical buckling load) is deemed to be largely responsible for such a behaviour. In the present paper, within the framework of the so-called classical theory (linear bifurcation eigenvalue analysis), the buckling behaviour of axially compressed cylindrical shells is firstly reviewed. Accordingly, doubly periodic eigenvectors (buckling modes) corresponding to the same eigenvalue (critical buckling load) can be determined, and their locus in a dimensionless meridional and circumferential buckling wavenumber space is described by a circle (known as the Koiter circle). In the case of axially compressed conical shells, no clear evidence of the existence of simultaneous buckling modes can be found in the literature. Then, such a problem is studied here via linear eigenvalue finite element analyses, showing that simultaneous doubly periodic modes do also occur for cones, and that their locus in a specifically defined dimensionless wavenumber space can be described by an ellipse (hereafter termed as the Koiter ellipse) whose aspect ratio is dependent on the tapering angle of the cone.  相似文献   

3.
On the topological bifurcation of flows around a rotating circular cylinder   总被引:1,自引:0,他引:1  
Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Reslts show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds numberRe and rotation parameter α, is built by a kinematic analysis of the steady flow fields. The project supported by the National Natural Science Foundation of China  相似文献   

4.
Experiments were performed to study the deformation and buckling of axially compressed circular cylindrical shells of Zr2.5Nb zirconium alloy under creep conditions. Computer simulation using the MSC.Marc 2012 software was conducted by step-by-step integration of the equations of quasistatic deformation of thin shells using Norton’s law of steady creep. The results of the experiment and computer simulation show that the buckling modes are a combination of axisymmetric bulges located near one end or both ends of the shell and axisymmetric buckling modes with the formation of three or four waves in the circumferential direction. A comparison is made of the time dependences of the axial strain of the shells obtained in the experiment and by computer simulation. It is shown that for large axial compressive stresses, these dependences are in satisfactory agreement. For lower values of these stresses, the difference between the theoretical and experimental dependences is greater.  相似文献   

5.
The thermal effect on axially compressed buckling of a double-walled carbon nanotube is studied in this paper. The effects of temperature change, surrounding elastic medium and van der Waals forces between the inner and outer nanotubes are taken into account. Using continuum mechanics, an elastic double-shell model with thermal effect is presented for axially compressed buckling of a double-walled carbon nanotube embedded in an elastic matrix under thermal environment. Based on the model, an explicit formula for the critical axial stress is derived in terms of the buckling modes of the shell and the parameters that indicate the effects of temperature change, surrounding elastic medium and the van der Waals forces. Based on that, some simplified analysis is carried out to estimate the critical axial stress for axially compressed buckling of the double-walled carbon nanotube. Numerical results for the general case are obtained for the thermal effect on axially compressed buckling of a double-walled carbon nanotube. It is shown that the axial buckling load of double-walled carbon nanotube under thermal loads is dependent on the wave number of axially buckling modes. And a conclusion is drawn that at low and room temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube increase as the value of temperature change increases, while at high temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube decrease as the value of temperature change increases.  相似文献   

6.
The curvature effects of interlayer van der Waals (vdW) forces on axially compressed buckling of a double-walled carbon nanotube (DWNT) of diameter down to 0.7 nm are studied. Unlike most existing models which assume that the interlayer vdW pressure at a point between the inner and outer tubes depends merely on the change of the interlayer spacing at that point, the present model considers the dependence of the interlayer vdW pressure on the change of the curvatures of the inner and outer tubes at that point. A simple expression is derived for the curvature-dependence of the interlayer vdW pressure in which the curvature coefficient is determined. Based on this model, an explicit formula is obtained for the axial buckling strain. It is shown that neglecting the curvature effect alone leads to an under-estimate of the critical buckling strain with a relative error up to −7%, while taking the average radius of two tubes as the representative radius and the curvature effect leads to an over-estimate of the critical buckling strain with a relative error up to 20% when the inner radius downs to 0.35 nm. Therefore, the curvature effects play a significant role in axially compressed buckling problems only for DWNTs of very small radii. In addition, our results show that the effect of the vdW interaction pressure prior to buckling of DWNTs under pure axial stress is small enough and can be negligible whether the vdW interaction curvature effects are neglected or not.  相似文献   

7.
Summary The method of initial functions is developed in cylindrical coordinates for axially symmetric elastodynamic deformation of the circular plate. The governing equations are derived from the three dimensional elastodynamic equations. Using a suitable transformation the difficulty in the application of the method of initial functions is removed. The method is used to obtain the free vibration frequencies of thick circular plates. Numerical results are given for the circular plate with clamped edges and compared with those of the known solutions.
Übersicht Die Methode der Anfangsfunktionen wird in Zylinderkoordinaten für axial symmetrische und elastodynamische Deformationen der Kreisplatte entwickelt. Die Gleichungen der Aufgabe werden aus den Gleichungen der dreidimensionalen dynamischen Elastizitätstheorie hergeleitet. Die Anwendung der Methode der Anfangsfunktionen folgt durch Gebrauch einer geeigneten Transformation. Die Methode wird zur Ermittlung der Eigenfrequenzen der dicken Kreisplatte angewendet. Die numerischen Ergebnisse für die eingespannte Kreisplatte werden mit den bekannten Näherungslösungen verglichen.
  相似文献   

8.
A novel re-defining of the orthotropic material properties in terms of a so-called associated geometric mean isotropic (GMI) material is used to develop a thorough buckling analysis of an axially-loaded orthotropic circular cylinder. A membrane prebuckling condition is assumed and an expression for the buckling stress is derived in terms of cylinder geometry, orthotropic material properties, and the number of waves in the buckling deformation pattern in the axial and circumferential directions. By assuming the number of waves in each direction are real-valued variables, as opposed to integers, conditions which result in stationary values of the buckling stress are sought, and once found, examined for their character as regards representing minima, maxima, or saddle points. Three quite different buckling characteristics are predicted, the particulars depending on the shear modulus of the orthotropic material relative to that of the associated GMI material. It is shown that if the shear modulus of the orthotropic material is greater than the shear modulus of the associated GMI material, the cylinder buckles into a unique axisymmetric deformation pattern. If the shear modulus of the orthotropic material is less than the shear modulus of the associated GMI material, the cylinder buckles into a unique nonaxisymmetric deformation pattern. If the shear modulus of the orthotropic material is exactly equal to the shear modulus of the associated GMI material (this is the situation for an isotropic cylinder), the cylinder can buckle into either axisymmetric or nonaxisymmetric deformation patterns. Moreover it is shown that, in this case, there exists a number of deformation patterns, all at essentially the same stress level. Closed-form lower-bound expressions for the buckling stress are developed using the adopted notation, the value of the shear modulus relative to the shear modulus of the GMI material determining which expression is applicable. The results of this analysis are applied to a circular cylinder constructed of a lattice structure consisting of helical and circumferential ribs, a so-called orthogrid lattice cylinder, where it is assumed that the ribs of the lattice structure are dense enough to be able to represent the elastic properties of the lattice with an equivalent homogenized orthotropic material. An isogrid cylinder, where the helical rib angle is 30° relative to the axial direction, is a special case. The orthotropic cylinder analysis is reformulated in terms of the material properties of the ribs and the angle of the helical ribs. For this situation the isogrid case is the GMI material, and the rib angle determines whether the shear modulus of the equivalent orthotropic material is greater than or less than the GMI material. This translates into the character of the buckling deformations depending directly on the rib angle.  相似文献   

9.
轴压随机几何缺陷圆柱壳屈曲的失效函数具有较强的非线性,对于该结构已应用的可靠性分析方法不能同时满足计算精度和计算效率的要求。本文发展一个修正的MonteCarlo法,由两个步骤执行:应用一阶可靠性方法计算Hasofer-Lind可靠性指标β;将简单MonteCarlo法的采样区域限制在基本随机变量构成的n维β-球外部,采样点由一个χ2分布的随机半径R≥β和(-1,1)均匀分布的随机方向组成,该修正的MonteCarlo法用于轴压随机几何缺陷圆柱壳屈曲强度可靠性分析表明,在相同精度的情况下修正的MonteCarlo法的样本容量比简单MonteCarlo法要低3个数量级,一阶可靠性方法的计算误差随着与分支屈曲模态一致的初始几何缺陷项数的增加越来越显著  相似文献   

10.
Some characteristic features of the dynamic inelastic buckling behaviour of cylindrical shells subjected to axial impact loads are discussed. It is shown that the material properties and their approximations in the plastic range influence the initial instability pattern and the final buckling shape of a shell having a given geometry. The phenomena of dynamic plastic buckling (when the entire length of a cylindrical shell wrinkles before the development of large radial displacements) and dynamic progressive buckling (when the folds in a cylindrical shell form sequentially) are analysed from the viewpoint of stress wave propagation resulting from an axial impact. It is shown that a high velocity impact causes an instantaneously applied load, with a maximum value at t=0 and whether or not this load causes an inelastic collapse depends on the magnitude of the initial kinetic energy.  相似文献   

11.
Analytic nonlinear three-dimension solutions are presented for axially symmetrical homogeneous isotropic circular plates and multilayered plates with rigidly clamped boundary conditions and under transverse load.The geometric nonlinearily from a moderately large deflection is considered.A developmental perturbation method is used to solve the complicated nonlinear three-dimension differential equations of equilibrium.The basic idea of this perturbation method is using the two-dimension solutions as a basic form of the corresponding three-dimension solutions,and then processing the perturbation procedure to obtain the three-dimension perturbation solutions.The nonlinear three-dimension results in analytic expressions and in numerical forms for ordinary plates and multilayered plates are presented.All of the plate stresses are shown in figures.The results show that this perturbation method used to analyse nonlinear three-dimension problems of plates is effective.  相似文献   

12.
This paper deals with the buckling of thin cylindrical shells with very large Batdorf parameters under external pressure. We first perform a simplified analysis from which we obtain explicit formulae for the critical load. An asymptotic analysis is carried out with a view to determining the effects of the boundary conditions on the critical loads and buckling shapes. The inverse of the Batdorf parameter is the convenient small parameter of the analysis. Among the whole set of boundary conditions, the axial boundary conditions are found to be have crucially important at the first order. This analysis also shows the existence of boundary layers in which the remaining boundary conditions are only significant at the second order, at the very most.  相似文献   

13.
For axisymmetric dispersion in laminar flow in a cylinder of circular cross section, we report the full time dependence of the first three dispersion coefficients, viz. X 0, X 1 and X 2. We investigate the use of a variety of transverse averages. We also indicate the dependence of the dispersion coefficients on the initial solute distribution and on the chemical activity of the solute.  相似文献   

14.
By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method.  相似文献   

15.
16.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

17.
18.
In this paper, we consider the static stability problems of axially moving orthotropic membranes and plates. The study is motivated by paper production processes, as paper has a fiber structure which can be described as orthotropic on the macroscopic level. The moving web is modeled as an axially moving orthotropic plate. The original dynamic plate problem is reduced to a two-dimensional spectral problem for static stability analysis, and solved using analytical techniques. As a result, the minimal eigenvalue and the corresponding buckling mode are found. It is observed that the buckling mode has a shape localized in the regions close to the free boundaries. The localization effect is demonstrated with the help of numerical examples. It is seen that the in-plane shear modulus affects the strength of this phenomenon. The behavior of the solution is investigated analytically. It is shown that the eigenvalues of the cross-sectional spectral problem are nonnegative. The analytical approach allows for a fast solver, which can then be used for applications such as statistical uncertainty and sensitivity analysis, real-time parameter space exploration, and finding optimal values for design parameters.  相似文献   

19.
A method for solving problems of fracture of an infinite solid with a circular cylindrical cavity and a coaxial cylindrical crack near the surface under an uniform axial compression is proposed using a non-classical criterial approach associated with a mechanism of a local stability loss near the defect. The theory of integral Fourier transforms and series expansions are used to reduce these problems to a system of paired integral equations and then to a system of linear algebraic equations with respect to the contraction parameter.  相似文献   

20.
John Miles 《Wave Motion》1996,23(4):387-391
Capillary-gravity waves induced by the lateral oscillation of a cylindrical container are considered on Hocking's hypothesis that the surface slope at the contact line is proportional to the vertical velocity. This problem has been considered by Shen, Sun and Hsieh on Evans's hypothesis that the surface slope at the contact line is prescribed and proportional to the excitation. The latter condition, in contrast to that of Hocking, leaves the normal modes and resonant frequencies unchanged from those of the classical problem (for which the surface slope vanishes at the contact line), and is conservative (whereas Hocking's condition implies dissipation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号