首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homogenization model for periodic masonry structures reinforced with continuous FRP grids is presented. Starting from the observation that a continuous grid preserves the periodicity of the internal masonry layer, rigid-plastic homogenization is applied directly on a multi-layer heterogeneous representative element of volume (REV) constituted by bricks, finite thickness mortar joints and external FRP grids. In particular, reinforced masonry homogenized failure surfaces are obtained by means of a compatible identification procedure, where each brick is supposed interacting with its six neighbors by means of finite thickness mortar joints and the FRP grid is applied on the external surfaces of the REV. In the framework of the kinematic theorem of limit analysis, a simple constrained minimization problem is obtained on the unit cell, suitable to estimate – with a very limited computational effort – reinforced masonry homogenized failure surfaces.A FE strategy is adopted at a cell level, modeling joints and bricks with six-noded wedge shaped elements and the FRP grid through rigid infinitely resistant truss elements connected node by node with bricks and mortar. A possible jump of velocities is assumed at the interfaces between contiguous wedge and truss elements, where plastic dissipation occurs. For mortar and bricks interfaces, a frictional behavior with possible limited tensile and compressive strength is assumed, whereas for FRP bars some formulas available in the literature are adopted to reproduce the delamination of the truss from the support.Two meaningful structural examples are considered to show the capabilities of the procedure proposed, namely a reinforced masonry deep beam (0°/90° continuous reinforcement) and a masonry beam in simple flexion for which experimental data are available. Good agreement is found between present model and alternative numerical approaches.  相似文献   

2.
Two-wythes masonry walls arranged in English bond texture were often used in the past as bearing panels in seismic area. On the other hand, earthquake surveys have demonstrated that masonry strength under horizontal actions is usually insufficient, causing premature collapses of masonry buildings, often ascribed to out-of-plane actions. Furthermore, many codes of practice impose for new brickwork walls a minimal slenderness, which for instance is fixed by the Italian O.P.C.M. 3431 equal to 12 for artificial bricks and 10 for natural blocks masonry.For the above reasons, the analysis at failure of English bond brickwork walls under out-of-plane actions is a topic that deserves consideration, despite the fact that almost the totality of the studies of masonry at failure is devoted to running bond arrangements. Furthermore, it must be noted that an approach based on the analysis of running bond texture – in comparison with English bond pattern – is not suitable for the investigation of the behavior of bearing panels.In this framework, in the present paper, a Reissner–Mindlin kinematic limit analysis approach is presented for the derivation of the macroscopic failure surfaces of two-wythes masonry arranged in English bond texture. In particular, the behavior of a 3D system constituted by infinitely resistant bricks connected by joints reduced to interfaces with frictional behavior and limited tensile/compressive strength is identified with a 2D Reissner–Mindlin plate. In this way, assuming both an associated flow rule for the constituent materials and a finite subclass of possible deformation modes, an upper bound approximation of macroscopic English bond masonry failure surfaces is obtained as a function of macroscopic bending moments, torsion and shear forces.Several examples of technical relevance are treated both at a cell level and at a structural level, addressing the differences in terms of collapse loads and failure surfaces due to different textures and constituent laws for joints. Finally, two meaningful structural examples consisting of a panel in cylindrical flexion and a masonry slab constrained at three edges and out-of-plane loaded are discussed. A detailed comparison in terms of deformed shapes at collapse and failure loads between a 2D FE Reissner–Mindlin limit analysis approach and a full 3D heterogeneous FE model shows the reliability of the results obtained using the kinematic identification approach proposed.  相似文献   

3.
A simplified kinematic procedure at a cell level is proposed to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid-plastic interfaces with friction, representing mortar joints. The herringbone pattern is geometrically described and the internal law of composition of the periodic cell is defined.A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in-plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume (REV) and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively.To assess elastic results, a standard FEM homogenization is also performed and a sensitivity analysis regarding two different orientations of the pattern, the thickness of the mortar joints and the ratio between block and mortar Young moduli is conducted. In this way, the reliability of the numerical model is critically evaluated under service loads.When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond orientation, (2) masonry texture and (3) mechanical properties adopted for joints.At a structural level, a FE homogenized limit analysis is performed on a masonry dome built in herringbone bond. In order to assess limit analysis results, additional non-linear FE analyses are performed, including a full 3D numerical expensive heterogeneous approach and models where masonry is substituted with an equivalent macroscopic material with orthotropic behavior and possible softening. Reliable predictions of collapse loads and failure mechanisms are obtained, meaning that the approach proposed may be used by practitioners for a fast evaluation of the effectiveness of herringbone bond orientation.  相似文献   

4.
Approximate expressions for the macroscopic out-of-plane elastic coefficients of brick masonry with a regular pattern are derived in closed form using a homogenization approach for periodic media. Following an approach similar to the Method of Cells for fiber reinforced composites, a (piecewise-)differentiable expression depending on very a limited number of degrees of freedom and fulfilling suitable periodicity conditions is proposed for the microscopic transverse displacement field over any Representative Volume Element (RVE). Some of the equilibrium conditions at the interfaces between bricks and mortar joints are also fulfilled. By averaging the moment and curvature fields over the RVE, the macroscopic bending stiffness coefficients can be explicitly obtained. Using the FE solution of a masonry panel subjected to elementary load conditions as a benchmark, the proposed approach is found to accurately match the numerically obtained stiffness coefficients, for masonry elements of different geometry and different mechanical properties. In several instances, the proposed expressions agree with the numerical predictions better than other analytical expressions available in the literature.  相似文献   

5.
In this paper, a formulation for limit analysis of three-dimensional masonry structures discretized as rigid block assemblages interacting through no-tension and frictional contact interfaces is developed. Linear and piecewise linearized yield functions are used for rocking, sliding and torsion failure. A simple yield condition has been defined to take into account interaction effects of shear force with torsion and bending moment. Associative flow rules are considered for strain rates. On the basis of the developed governing equations, the limit analysis problem has been formulated as a nonlinear mathematical program. An iterative solution procedure based on linear programming is used to solve the limit analysis problem and to take into account nonlinearities due to the influence of bending moments and shear stresses on torsion strength. The results of experimental investigations on out-of-plane masonry walls constrained at one edge and different examples from literature were considered for validation. Comparison with existing formulations is carried out.  相似文献   

6.
The effect of the dilatancy of masonry interfaces and of the size of the building blocks on the strength of masonry structures is quantified herein. The study focuses mainly on out-of-plane loadings, which can appear due to various factors such as wind, earthquakes or explosions. The analysis is performed using the Discrete Element Method (DEM), which allows to access directly various micro-mechanical parameters, such as the joints dilatancy angle and the size of the building blocks. Detailed DEM numerical models of existing experimental configurations are presented. The numerical results are first compared and validated towards the experimental observations and then they are used to derive qualitative and quantitative conclusions regarding the effects of joints dilatancy and blocks size. It is shown that dilatancy plays an important role on the overall strength of masonry even under low confinement. The size of the blocks is also an important parameter that needs to be considered in the modeling of masonry structures.  相似文献   

7.
8.
Earthquake surveys have demonstrated that the lack of out-of-plane strength is a primary cause of failure in many traditional forms of masonry. Moreover, bearing walls are relatively thick and, as a matter of fact, many codes of practice impose a minimal slenderness for them, as for instance the recent Italian O.P.C.M. 3431 [2005. Ulteriori modifiche ed integrazioni all’OPCM 3274/03 (in Italian) and O.P.C.M. 3274, 20/03/2003, Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica (in Italian)], in which the upper bound slenderness is fixed respectively equal to 12 for artificial bricks and 10 for natural blocks masonry. In this context, a formulation at failure for regular assemblages of bricks based both on homogenization and Reissner–Mindlin theory seems particularly attractive. In this paper a kinematic limit analysis approach under the hypotheses of the thick plate theory is developed for the derivation of the macroscopic failure surfaces of masonry out-of-plane loaded. The behavior of a 3D system of blocks connected by interfaces is identified with a 2D Reissner–Mindlin plate. Infinitely resistant blocks connected by interfaces (joints) with a Mohr–Coulomb failure criterion with tension cut-off and compressive cap are considered. Finally, an associated flow rule for joints is adopted. In this way, the macroscopic masonry failure surface is obtained as a function of the macroscopic bending moments, torsional moments and shear forces by means of a linear programming problem in which the internal power dissipated is minimized, once that a subclass of possible deformation modes is a priori chosen. Several examples of technical relevance are presented and comparisons with previously developed Kirchhoff–Love static [Milani, G., Lourenço, P.B., Tralli, A., 2006b. A homogenization approach for the limit analysis of out-of-plane loaded masonry walls. J. Struct. Eng. ASCE (in press)] and kinematic [Sab, K., 2003.Yield design of thin periodic plates by a homogenisation technique and an application to masonry walls. C.R. Mech. 331, 641–646] failure surfaces are provided. Finally, two meaningful structural examples are reported, the first concerning a masonry wall under cylindrical flexion, the second consisting of a rectangular plate with a central opening out-of-plane loaded. For both cases, the influence of the shear strength on the collapse load is estimated.  相似文献   

9.
A 3D model for the evaluation of the non-linear behavior of masonry double curvature structures is presented. In the model, the heterogeneous assemblage of blocks is substituted with a macroscopically equivalent homogeneous non-linear material. At the meso-scale, a curved running bond representative element of volume (REV) constituted by a central block interconnected with its six neighbors is discretized through of a few six-noded rigid wedge elements and rectangular interfaces. Non linearity is concentrated exclusively on joints reduced to interface, exhibiting a frictional behavior with limited tensile and compressive strength with softening. The macroscopic homogenous masonry behavior is then evaluated on the REV imposing separately increasing internal actions (in-plane membrane actions, meridian and parallel bending, torsion and out-of-plane shear). This simplified approach allows to estimate heuristically the macroscopic stress–strain behavior of masonry at the meso-scale. The non-linear behavior so obtained is then implemented at a structural level in a novel FE non-linear code, relying on an assemblage of rigid infinitely resistant six-noded wedge elements and non-linear interfaces, exhibiting deterioration of the mechanical properties.Several numerical examples are analyzed, consisting of two different typologies of masonry arches (a parabolic vault and an arch in a so-called “skew” disposition), a ribbed cross vault, a hemispherical dome and a cloister vault. To fully assess numerical results, additional non-linear FE analyses are presented. In particular, a simplified model is proposed, which relies in performing at a structural level a preliminary limit analysis – which allows to identify the failure mechanism – and subsequently in modeling masonry through elastic elements and non-linear interfaces placed only in correspondence or near the failure mechanism provided by limit analysis. Simulations performed through an equivalent macroscopic material with orthotropic behavior and possible softening are also presented, along with existing experimental evidences (where available), in order to have a full insight into the capabilities and limitations of the approach proposed.  相似文献   

10.
11.
The dynamic behavior of masonry walls strengthened with composite materials and subjected to dynamic out-of-plane loading is analytically investigated. The analytical model derived in the paper focuses on one-way action through the height of the wall and it is based on dynamic equilibrium and the compatibility conditions between the structural components (masonry units, mortar joints, FRP reinforcement, and adhesive layers). The cracking and the nonlinear and dissipative behavior of the mortar material, the breathing of cracks, the rocking phenomenon, the development of arching forces, the interaction between the existing wall and the composite system, and the formation of debonded zones near the cracked mortar joints are considered in the nonlinear dynamic analysis. A numerical study that examines the capabilities of the model, quantifies the response of the strengthened wall to dynamic loads such as free and forced vibrations and seismic base excitation, and compares it to the response of the unstrengthened wall is presented. A summary and conclusions close the paper.  相似文献   

12.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

13.
This study presents a two-scale model to describe the out-of-plane masonry response. One-dimensional (1D) structural elements, like masonry columns or strips of long wall characterized by the periodic repetition of bricks and mortar arranged in stack bond, are considered. A damage-friction plasticity law is adopted to model the mortar joint constitutive response, while the bricks are assumed as linear elastic. A 1D beam formulation is introduced at both the structural and micromechanical scale, linking the two levels by means of a kinematic map. This expresses the microscopic beam strains in the masonry unit cell (UC) as function of the macroscopic generalized strains. The kinematic field in the UC is completed by adding an unknown periodic fluctuation term. A nonlinear homogenization procedure is developed, proposing a semi-analytical solution for the micromechanical problem, based on the fiber discretization of the mortar joints. A force-based beam-column finite element procedure is adopted at the structural scale and the solution algorithm for the element state determination is illustrated in details. Some numerical applications, showing the UC constitutive response and the behavior of masonry structural elements, are finally presented.  相似文献   

14.
A mechanistic model with rigid elements and interfaces suitable for the non-linear dynamic analysis of full scale 3D masonry buildings is presented. The model relies into two steps: in the first step, a simplified homogenization is performed at the meso-scale to deduce the mechanical properties of a macroscopic material, to be used in structural applications; the second step relies into the implementation of a Rigid Body and Spring Model (RBSM) constituted by rigid elements linked with homogenized interfaces. In the homogenization step, a running bond elementary cell is discretized with 24 three-node plane-stress elastic triangular elements and non-linear interfaces representing mortar joints. It is shown how the mechanical problem in the unit cell is characterized by few displacement variables and how homogenized stress–strain curves can be evaluated by means of a semi-analytical approach. The second step relies on the implementation of the homogenized curves into a RBSM, where an entire masonry structure can be analyzed in the non-linear dynamic range through a discretization with rigid elements and inelastic interfaces. Non-linear structural analyses are conducted on a church façade interconnected with a portion of the perpendicular walls and on a small masonry building, for which experimental and numerical data are available in the literature, in order to show how quite reliable results may be obtained with a limited computational effort.  相似文献   

15.
In this paper, a masonry system composed of a façade wall connected with two sidewalls and subjected to out-of-plane loading is investigated within the framework of three-dimensional limit analysis. Two different modeling approaches, namely macro and micro-block models, are adopted. A rigid-perfectly plastic model with dry contact interfaces governed by Coulomb failure criterion is assumed for masonry walls with regular units and staggering (non-standard limit analysis). Three classes of failure modes are investigated, involving rocking, sliding, twisting failure and combinations of them. The macro-block model is based on the assumption that the failure involves a number of cracks which separate the structure into a few macro-blocks and all the possible relative motions among micro-blocks are concentrated along the cracks. Two limiting conditions for the ultimate load factor are kinematically computed by use of minimization routines. The micro-block model is based on a concave contact formulation in which contact points are located at the corners of interfaces, allowing failure modes involving opening and sliding to be simulated. An iterative solution procedure is used to solve the non-associative friction problem, with second order cone programming (SOCP) used to allow the conic yield function to be solved directly. Both models are validated against experimental outcomes from the literature. A parametric analysis is carried out in order to highlight the influence of each geometrical and mechanical parameter on the prevalence of a mechanism over the other. The presence of an unrestrained horizontal floor system with different orientations is also analyzed.  相似文献   

16.
The study of masonry vaults should take into account the essentials of the material “masonry” – i.e. heterogeneity, almost no resistance to tension combined with a good compressive strength and a high friction coefficient, as well as the overall importance of the geometry for achieving the equilibrium.In this paper, a new six-noded triangular curved element, specifically developed for the kinematic limit analysis of masonry shells, is presented. Plastic dissipation is allowed only at the interfaces (generalized cylindrical hinges) between adjoining elements for combined membrane actions, bending moment, torsion and out-of-plane shear, as it is required for the analysis of thick (Reissner–Mindlin) shells. An upper bound of the collapse load is so obtained, since, looking at the dual formulation, the admissibility of the stress state is imposed only at the element boundaries. Masonry strength domain at each interface between contiguous triangular elements is evaluated resorting to a suitable upper bound FE homogenization procedure. The model is assessed through several numerical simulations on a number of masonry shells experimentally tested until collapse. In particular, the dependence of the collapse multiplier on the mesh and on the material parameters (sensitivity analysis) is thoroughly discussed.  相似文献   

17.
Based on the definitions of hardening, softening and ideal plastic behavior of elastic-plastic materials in the true stress tensor space, the phenomena of simple shear oscillation are shown to be relative to the oscillatory occurrence of hardening and softening behavior of elastic-plastic materials, namely the oscillation of hardening behavior, by analyzing a simple model of rigid-plastic materials with kinematical hardening under simple shear deformation. To make the models of elastic-plastic materials realistic, must be satisfied the following conditions: for any constitutive model, its response stresses to any continuous plastic deformation must be non-oscillatory, and there is no oscillation of hardening behavior during the plastic deformation.  相似文献   

18.
A new general approach for the limit analysis of out-of-plane loaded masonry walls based on an upper bound formulation is presented. A given masonry wall of generic form presenting openings of arbitrary shape is described through its Non-Uniform Rational B-Spline (NURBS) representation in the three-dimensional Euclidean space. A lattice of nodes is defined in the parameters space together with possible fracture lines. An initial set of rigid elements initially subdividing the original wall geometry is identified accordingly. A homogenized upper bound limit analysis formulation, which takes into account the main characteristics of masonry material such as very low resistance in traction and anisotropic behavior is deduced. Moreover the effect of vertical loads and membrane stresses is considered, assuming internal dissipation allowed exclusively along element edges. A number of technically meaningful examples prove that a good estimate of the collapse load multiplier is obtained, provided that the initial net of yield lines is suitably adjusted by means of a meta-heuristic approach (i.e. a Genetic Algorithm, GA) in order to enforce that element edges accurately represent the actual failure mechanism.  相似文献   

19.
The aim of this paper is to study non-periodic masonries – typical of historical buildings – by means of a perturbation approach and to evaluate the effect of a random perturbation on the elastic response of a periodic masonry wall. The random masonry is obtained starting from a periodic running bond pattern. A random perturbation on the horizontal positions of the vertical interfaces between the blocks which form the masonry wall is introduced. In this way, the height of the blocks is uniform, while their width in the horizontal direction is random. The perturbation is limited such as each block has still exactly 6 neighboring blocks. In a first discrete model, the blocks are modeled as rigid bodies connected by elastic interfaces (mortar thin joints). In other words, masonry is seen as a “skeleton” in which the interactions between the rigid blocks are represented by forces and moments which depend on their relative displacements and rotations. A second continuous model is based on the homogenization of the discrete model. Explicit upper and lower bounds on the effective elastic moduli of the homogenized continuous model are obtained and compared to the well-known effective elastic moduli of the regular periodic masonry. It is found that the effective moduli are not very sensitive to the random perturbation (less than 10%). At the end, the Monte Carlo simulation method is used to compare the discrete random model and the continuous model at the structural level (a panel undergoing in plane actions). The randomness of the geometry requires the generation of several samples of size L of the discrete masonry. For a sample of size L, the structural discrete problem is solved using the same numerical procedure adopted in [Cecchi, A., Sab, K., 2004. A comparison between a 3D discrete model and two homogenized plate models for periodic elastic brickwork, International Journal of Solids Structures 41 (9–10), 2259–2276] and the average solution over the samples gives an estimation which depends on L. As L increases, an asymptotic limit is reached. One issue is to find the minimum size for L and to compare the asymptotic average solution to the one obtained from the continuous homogenized model.  相似文献   

20.
A three-dimensional photoelastic analysis using the stress freezing and slicing techniques was employed to study the stress distribution and the stress-concentration factors around an elliptical hole in a plate of finite thickness. The plate was subjected to simple out-of-plane bending. A special bending device was designed to produce uniform bending moment at the two opposite free edges of the plate. Six plates with various elliptical holes were studied. The stress variation across the plate thickness at the periphery of the elliptical hole was also investigated. The experimental results were correlated with the existing theoretical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号