首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixed-mode (I + II) crack model with a plastic strip on its continuation under plane strain is proposed. The stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition. In the quasibrittle case, the governing system of equations includes stress intensity factors K I, K II, and T-stresses  相似文献   

2.
A novel and improved atomistic simulation based cohesive zone law characterizing interfacial debonding is developed which explicitly accounts for the non-planarity of the crack propagation. Group of atoms in the simulation constituting cohesive zones which are used to obtain local stress and crack opening displacement data are determined dynamically during the non-planar crack growth as they cannot be determined apriori. The methodology is used to study the debonding of Σ5 (2 1 0)/[0 0 1] symmetric tilt grain boundary interface in a Cu bicrystal under several mixed mode loading conditions. Simulations show that such bicrystalline specimen exhibits three types of energy dissipative mechanisms – shear coupled GB migration (SCM) away from the crack-tips, change in spacial orientation of GB structural units rendering highly disordered grain boundary near the crack tips and brittle intergranular fracture. Which combination of these three deformation mechanism will be active influencing the degree of non-planarity of the crack propagation at various stages of loading depends on the loading mode-mixity. As the ratio of shear component of the loading parallel to the GB plane and normal to the tilt axis with respect to the normal loading increases (thereby increasing the mode-mixity), overall strain-to-failure also increases and SCM tends to become the dominant deformation mechanism. Through this framework, analytical functional forms and parameters describing cohesive laws for both normal and shear traction as a function of the mode-mixity of the loading and crack opening displacement are predicted.  相似文献   

3.
A novel singular finite element is presented to study cracked plates with arbitrary traction acting on crack surfaces. Firstly, the analytical solution around crack tips is determined using the symplectic dual approach. Subsequently, the solution is used to develop a novel singular finite element, which depicts accurately the characteristic of singular stresses field near crack tips. And the novel element can be applied to solve cracked plates, and both Mode I and Mode II stress intensity factors can be determined directly and accurately. Lastly, two numerical examples are given to illustrate the present method.  相似文献   

4.
Amixed-mode (I + II) crack model with a plastic strip on its continuation is proposed. The three unknown stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition  相似文献   

5.
In this study, the finite element modeling of the compact tension shear specimens has been used to evaluate the effects of overloading on fatigue crack growth with mixed-mode loading I+II. Element creation and modeling is done by CASCA software. FRANC2D was used for stress analysis and the determination of crack parameters. Life estimation of samples was done by using the software ETBX. To create the mixed-mode I+II, different loading angles of 0, 15, 45 and 75 degrees (with respect to normal direction to the crack surface) were used with various overloading ratios. The effects of residual stresses due to overloading with saving and restoring capabilities were considered as a separate loading. To confirm the modeling results, models were built with ABAQUS and also compared with the results of numerical and experimental data in the literature. There are good agreements in determining the path of the crack growth and life estimation. The effects of the loading direction, overloading ratio and its load ratio, combination of overloadings and their locations on the fatigue crack growth and life are investigated.  相似文献   

6.
Holographic interferometry was used to study the mixed-mode fracture characteristics of mortar. The nature of crack propagation in such quasibrittle materials and the theoretical model used to interpret the experimental results indicated that a highly sensitive measurement technique was required. The gradual curvature of the propagating crack at different sections of the specimen necessitated full-field observation capability. The nature of the problem made holographic interferometry the ideal technique for this application. To measure the in-plane components of the opening and sliding of the crack surfaces during propagation, a single holographic plate was placed very close to the specimen. This allowed four independent observations of any point on the specimen from the four corners of the plate without any need for additional optics of exposures. Double-exposure holograms were made at different crack-propagation stages. The developed plate was illuminated by an unexpanded reference beam to form a real image of the object and observe displacement fringes. Fringe data were interpreted by using computer software written for this research.  相似文献   

7.
This paper focuses on the study of the influence of a mixed-mode crack on the coupled response of a functionally graded magnetoelectroelastic material (FGMEEM). The crack is embedded at the center of a 2D infinite medium subjected to magnetoelectromechanical loads. The material is graded in the direction orthogonal to the crack plane and is modeled as a nonhomogeneous medium with anisotropic constitutive laws. Using Fourier transform, the resulting plane magnetoelectroelasticity equations are converted analytically into singular integral equations which are solved numerically to yield the crack-tip mode I and II stress intensity factors, the electric displacement intensity factors and the magnetic induction intensity factors. The main objective of this paper is to study the influence of material nonhomogeneity on the fields’ intensity factors for the purpose of gaining better understanding on the behavior of graded magnetoelectroelastic materials.  相似文献   

8.
CTS试件中复合型疲劳裂纹扩展   总被引:3,自引:0,他引:3  
马世骧  胡泓 《力学学报》2006,38(5):698-704
针对复合型循环载荷作用下的金属构件中的裂纹扩展问题进行了实验分析和理论建模. 首先 采用紧凑拉剪试件(CTS)和 Richard研制的复合型载荷加载装置,对承受复合型循环载荷的裂纹进行了实验研究. 实验选择了两种金属材料试件,分别承受3种形式的复合型循环载荷的作用,在裂纹尖端具 有相同的初始应力场强度的条件下考察复合型循环载荷对裂纹扩展规律的影响. 实验结果表明,疲劳裂纹的扩展速率与加载角度有关. 对于同样金属材料的试件,当裂尖处 初始应力场强度相等时,载荷越接近于II型,裂纹增长速率越快. 采用等效应力强度 因子(I型和II型应力强度因子的组合)、裂纹扩展速率及复合强度等参数,以实验数据为 基础,建立了一个疲劳裂纹扩展模型,用来预测裂纹在不同模式疲劳载荷作用下的扩展速率. 为验证其有效性,该模型被应用于钢制试件的数值模拟计算中. 实验结果与模拟计算曲线保 持一致,表明该模型可以用来估算带裂纹金属构件的寿命.  相似文献   

9.
10.
11.
The nature of crack propagation in thermally stressed brittle materials is described. Experimental data indicate that the fracture behavior is strongly influenced by mixed-mode crack propagation. Simple analyses are presented which qualitatively describe stable and dynamic crack propagation in thermal stress fields in the presence or presence of crack interaction. Recommendations are made of additional theoretical work.  相似文献   

12.
This paper gives an asymptotic analysis of the deformation field near the tip of an arbitrary mixed-mode crack in a compressible hyperelastic harmonic material which loses ellipticity at sufficiently large deformations. It is found that the near-tip deformation field is characterized by a localized non-elliptic deformation band issuing from the crack-tip and bounded by two curves of discontinuous deformation gradient. Explicit expression for the near-tip deformation field is obtained both inside and outside the localized deformation band. In particular, a simple relation is derived that determines the orientation of the deformation band in terms of two complex governing parameters of the near-tip fields inside and outside the deformation band, respectively.  相似文献   

13.
In this paper, we compute the constitutive behavior of a ferroelectric ceramic by a plane strain finite element model, where each element represents a single grain in the polycrystal. The properties of a grain are described by the microscopic model for switching in multidomain single crystals of ferroelectric materials presented by Huber et al. [J. Mech. Phys. Solids 47 (1999) 1663]. The poling behavior of the polycrystal is obtained by employing the finite element formulation for electromechanical boundary value problems developed by Landis [Int. J. Numer. Meth. Eng. 55 (2002) 613]. In particular, we address the influence of the single grain properties and the interaction between grains, respectively.  相似文献   

14.
On condition that any perfectly plastic stress component at a crack tip is nothingbut the function ofθ.by making use of equilibrium equations,anisotropic plastic stress-strain-rate relations,compatibility equations and Hill anisotropic plastic yieldcondition,in the present paper,we derive the generally analytical expressions of theanisotropic plastic stress field at a mixed-mode crack tip under plane and anti-planestrain.Applying these generally analytical expressions to the mixed-mode cracks,wecan obtain the analytical expressions of anisotropic plastic stress fields at the tips ofmixed-modeⅠ-Ⅲ,Ⅱ-ⅢandⅠ-Ⅱ-Ⅲcracks.  相似文献   

15.
An integral formulation for computing the nonsingular stresses (NSS) in a cracked body under mixed-mode static and dynamic loads is presented. The reciprocity theorems are applied to find the integral formula. The auxiliary fields are selected to eliminate the singular terms in the asymptotic expansion of the stresses near the crack tip. For elastodynamic crack problems, the integral representation of the NSS is presented in both the time and Laplace transform domain. Required variables along the integration path and region enclosed by the integration contour are obtained from the boundary element analysis. Influence of the NSS on predicting the crack growth direction is investigated for cracks under mixed-mode load conditions.  相似文献   

16.
In [1], under the condition that all the perfectly plastic stress components at a crack tip are functions of ϕ only, making use of equilibrium equations, stress-strain rate relations, compatibility equations and yield condition. Lin derived the general analytical expressions of the perfectly plastic stress field at a mixed-mode crack tip under plane and anti-plane strain. But in [1] there were several restrictions on the proportionality factor γ in the stress-strain rate relations, such as supposing that γ is independent of ϕ and supposing that γ=c or cr−1. In this paper, we abolish these restrictions. The cases in [1], γ=crd (n=0 or-1) are the special cases of this paper.  相似文献   

17.
Inverse analysis is widely applied to the identification of material properties or model parameters. In order to improve the computational efficiency of the inverse method based on the genetic algorithm, an interpolation scheme upon the response surface constructed by the finite element simulation has been adopted in this paper. Meanwhile, a gradual homogenization treatment scheme has also been presented to improve the convergence of the inverse method based on the Kalman filter algorithm. Both methods are proven effective in dealing with the single-objective inverse problem. However, literature studies show that the adoption of multiple types of experimental information is useful to improve the accuracy of inverse analysis. In this case, it turns into a multiple-objective inverse problem. Our practice proved that the above-mentioned two methods might not yield a proper result if the sensitivity issue of different types of information is not considered. Therefore, another multi-objective inverse method, in combination of the above two optimization algorithms and a weight-estimating scheme that can consider such sensitivity, has been further presented. Finally, by using a mixed-mode crack propagation simulation and two types of experimental information (loading-displacement response curve and crack path profile), the parameters of the cohesive zone model were inversely identified and its simulation results are in good agreement with the experiment.  相似文献   

18.
CuAl14Ni4,2 (wt%) is a shape memory alloy which at temperatures above 60°C assumes the austenitic phase, while below 20°C it forms martensitic twins. In a single crystal these phase transitions can be observed particularly well and this paper illustrates the phenomenon by some colorful photographs.  相似文献   

19.
Two-dimensional photoelastic experiments were conducted to obtain isochromatic fringe fields in the region between a crack tip and a concentrated load on the boundary of a half plane. An analysis method is developed to determine the mixed-mode stress-intensity factors due to two interacting stress singularities. The results obtained showed the dominance of the opening mode in extending a delamination crack by sliding surface loads. Paper was presented at the 1989 SEM Spring Conference on Experimental Mechanics held in Cambridge, MA on May 28–June 1.  相似文献   

20.
The paper aims at calculating the dislocation distribution inside a single crystal rod loaded in torsion within the framework of continuum dislocation theory. We construct an explicit analytical solution of this problem in terms of the modified Bessel and hypergeometric functions. The interesting features of this solution are the energetic and dissipative thresholds for dislocation nucleation, the translational work hardening, and the size effect. The comparison with experimental results shows quite good agreement of the torque-twist curves for small up to moderate twists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号