共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the dielectric effects inside a crack, the problem of an electrically dielectric crack in a functionally graded piezoelectric layer is addressed in this paper. The energetically consistent crack-face boundary conditions are utilized to analyze the effects of a dielectric of crack interior. Applying the Fourier transform technique, the boundary-value problem is reduced to solving three coupling singular equations. Then a system of non-linear algebraic equations is obtained and the field intensity factors along with the energy release rate are given. Numerical results show the differences of the electric displacement inside a crack, the stress and electric displacement intensity factors and the energy release rate using the permeable, impermeable, semi-permeable and energetically consistent boundary conditions respectively. The effects of the material non-homogeneity, the applied electric field and the discharge field of crack interior on the electrostatic traction acting on the crack faces and the energy release rate are further studied through the energetically consistent boundary conditions. 相似文献
2.
The Mode-I transient response of a functionally graded piezoelectric medium is solved for a through crack under the in-plane mechanical and electric impact. Integral transforms and dislocation density functions are employed to reduce the problem to singular integral equations. Numerical results display the effects of the loading combination parameter λ and the material parameter βa on the dynamic stress intensity factor and electric displacement intensity factor. The energy density factor criterion is applied to obtain the maximum of the minimum energy density factor and the direction of crack initiation. 相似文献
3.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location. 相似文献
4.
B. L. Wang 《Mechanics Research Communications》2003,30(2):151
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors. 相似文献
5.
6.
《International Journal of Solids and Structures》2005,42(11-12):3321-3337
This paper investigates the singular electromechanical field near the crack tips of an internal crack. The crack is perpendicular to the interface formed by bonding two half planes of different functionally graded piezoelectric material. The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The singular integral equations for impermeable and permeable cracks are derived and solved by using the Gauss–Chebyshev integration technique. It shows that the stresses and electrical displacements around the crack tips have the conventional square root singularity. The stress intensity and electric displacement intensity factors are highly affected by the material nonhomogeneity parameters β and γ. The solutions for some degenerated problems can also be obtained. 相似文献
7.
In this paper, the dynamic anti-plane crack problem for two bonded functionally graded piezoelectric materials is considered. The crack is perpendicular to the interface and assumed to be electrically impermeable or permeable. Integral transforms are employed to reduce the problem to Cauchy singular equations that can be solved numerically. The effects of the loading parameter λ, material constants and the geometry parameters on the stress intensity factor and the energy density factor are studied. It is found that for the impermeable case, the normalized dynamic stress intensity factor may increase or decrease in different time domains determined by the sign and magnitude of λ. 相似文献
8.
X. Y. Li Z. K. Wang S. H. Huang 《International Journal of Solids and Structures》2004,41(26):310-7328
To investigate the features of Love waves in a layered functionally graded piezoelectric structure, the mathematical model is established on the basis of the elastic wave theory, and the WKB method is applied to solve the coupled electromechanical field differential equation. The solutions of the mechanical displacement and electrical potential function are obtained for the piezoelectric layer and elastic substrate. The dispersion relations of Love waves are deduced for electric open and short cases on the free surface respectively. The actual piezoelectric layer–elastic substrate systems are taken into account, and some corresponding numerical examples are proposed comparatively. Thus, the effects of the gradient variation about material constants on the phase velocity, the group velocity, the coupled electromechanical factor and the cutoff frequency are discussed in detail. So the propagation behaviors of Love waves in inhomogeneous medium is revealed, and the dispersion and the anti-dispersion are analyzed. The conclusions are significant both theoretically and practically for the surface acoustic wave devices. 相似文献
9.
《International Journal of Solids and Structures》2006,43(20):6148-6164
This paper studies the internal crack problem located within one functionally graded piezoelectric strip. One crack is normal to the edge of the strip and the material properties vary along the direction of crack length. Three different boundary conditions and both impermeable and permeable cases are discussed. The problem can be reduced to a system of singular integral equations and solved by using the Gauss–Chebyshev formulas. The results show that the edge boundary conditions and the nonhomogeneous parameter significantly control the magnitudes of stress and electric displacement intensity factors. 相似文献
10.
The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading 总被引:6,自引:0,他引:6
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208). 相似文献
11.
《International Journal of Solids and Structures》2003,40(21):5649-5667
The electrical nonlinear behavior of an anti-plane shear crack in a functionally graded piezoelectric strip is studied by using the strip saturation model within the framework of linear electroelasticity. The analysis is conducted on the electrically unified crack boundary condition with the introduction of the electric crack condition parameter that can describe all the electric crack boundary condition in accordance with the aspect ratio of an ellipsoidal crack and the permittivity inside the crack, in particular, including traditional permeable and impermeable crack boundary conditions. The resulting mixed boundary value problem is analysed and near tip field is obtained by using the integral transform techniques. Numerical results for the normalized five kinds of energy release rates under the small scale electric saturation condition are presented and compared to show the influences of the electric crack condition parameter with the variation of the ellipsoidal crack parameters, electric loads, functionally graded piezoelectric material gradation, crack length, electromechanical coupling coefficient, and crack location. It reveals that there are considerable differences between the results obtained from the traditional electric crack models and those obtained from the current unified crack model. 相似文献
12.
Propagation of an anti-plane moving crack in a functionally graded piezoelectric strip 总被引:4,自引:0,他引:4
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged. 相似文献
13.
The dynamic fracture problem for a functionally graded piezoelectric plate containing a crack perpendicular to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the medium vary continuously in the thickness direction. Integral transform techniques and dislocation density function are employed to reduce the problem to the solution of a singular integral equation. Mode I dynamic energy density factors are presented for an internal crack as well as an edge crack for various values of dimensionless parameters representing the size and location of the crack and the material nonhomogeneity. 相似文献
14.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric
layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The
crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to
a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy
release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material
nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail. 相似文献
15.
This paper focuses on the study of the influence of a mixed-mode crack on the coupled response of a functionally graded magnetoelectroelastic material (FGMEEM). The crack is embedded at the center of a 2D infinite medium subjected to magnetoelectromechanical loads. The material is graded in the direction orthogonal to the crack plane and is modeled as a nonhomogeneous medium with anisotropic constitutive laws. Using Fourier transform, the resulting plane magnetoelectroelasticity equations are converted analytically into singular integral equations which are solved numerically to yield the crack-tip mode I and II stress intensity factors, the electric displacement intensity factors and the magnetic induction intensity factors. The main objective of this paper is to study the influence of material nonhomogeneity on the fields’ intensity factors for the purpose of gaining better understanding on the behavior of graded magnetoelectroelastic materials. 相似文献
16.
《European Journal of Mechanics - A/Solids》2007,26(1):123-136
The dynamic fracture problem for a functionally graded piezoelectric material (FGPM) strip containing a crack parallel to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the strip vary continuously along the thickness direction of the strip, and that the strip is under the in-plane mechanical and electric impact. Integral transform techniques and dislocation density functions are employed to reduce the problem to the solutions of a system of singular integral equations. The dynamic stress and electric displacement intensity factors versus time are presented for various values of dimensionless parameters representing the crack size, the crack location, the material nonhomogeneity and the loading combination. 相似文献
17.
弹性功能梯度材料板条中周期裂纹的反平面问题 总被引:1,自引:0,他引:1
讨论了弹性功能梯度材料板条中裂纹的反平面问题. 用Fourier
变换方法得到了一个基本解. 这个基本解表示了实轴上一点作用有点位错时引起的影响. 利
用此基本解可得单裂纹和周期裂纹问题的奇异积分方程. 在周期裂纹求解时,
远处裂纹对于中央裂纹的影响作了有效的近似处理. 最后, 给出了数值结果,
它表示了材料性质对于裂纹端应力强度因子的影响. 相似文献
18.
Dynamic response of a crack in a functionally graded interface of two dissimilar piezoelectric half-planes 总被引:3,自引:0,他引:3
Summary In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through
a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular
integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution
and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of
the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of
applied electric impact.
Received 4 December 2001; accepted for publication 9 July 2002
This work is supported by the National Natural Science Foundation of China through Grant No. 10132010. 相似文献
19.
《International Journal of Solids and Structures》2003,40(13-14):3273-3291
The present study examines the crack problems in a functionally graded material (FGM) whose upper and bottom surfaces are fully bonded with dissimilar homogeneous materials. A so-called generalized Kelvin solution based boundary element method is used in the numerical examination. The multi-region method and the eight-node traction-singular boundary elements are used for the crack evaluation. The layer discretization technique is utilized to approximate the depth material non-homogeneity of the FGM layer. The proposed method can deal with any depth variations in both the shear modulus and the Poisson ratio of the FGMs. Results of the present analysis are compared very well with the exact analytical solutions available in the literature, which demonstrates that the proposed method can accurately evaluate the stress intensity factors (SIFs) for cracks in FGMs. The paper further evaluates the effect of the functionally graded variations in the Poisson ratio on the stress intensity factors. The paper also assesses the elliptical cracks in the FGM system. The paper presents the influence of both the non-homogeneity and the thickness of the FGM layer on the three SIFs associated with the elliptical cracks. 相似文献
20.
《International Journal of Solids and Structures》2007,44(2):465-479
Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying paths in functionally graded materials (FGMs) is considered. The property gradation in FGMs is considered by varying shear modulus and mass density exponentially along the gradation direction. Crack tip out of plane displacement fields and their gradients are developed for propagating curved cracks of arbitrary velocity using asymptotic approach. The mode-mixity due to the inclination of curved crack with respect to property gradient is accommodated in the analysis through superposition of the opening and shear modes. The expansion of the displacement fields and their gradients around the crack-tip are derived in powers of radial coordinates with the coefficients of expansion depending on the instantaneous value of the local curvature of the crack path, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors. The effect of the transient terms instantaneous local curvature, crack-tip speed, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors on the contours of constant out of plane displacement are also discussed. 相似文献