首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
A numerical method to study three-dimensional (3D) contact problems in solids with anisotropic elastic behavior is developed in this work. This formulation is based on the Boundary Element Method (BEM) for computing the elastic influence coefficients and on projection functions over the augmented Lagrangian for contact restrictions fulfillment. The constitutive equations of the potential contact zone are Signorini’s contact conditions and Coulomb’s law of friction. The formulation uses a recently introduced explicit approach for fundamental solutions evaluation, which are valid for general anisotropic behavior meanwhile mathematical degeneracies are allowed. The accuracy and robustness of the proposed method is illustrated by solving some examples previously presented in the literature. This approach is further applied to study the influence of solids anisotropy on the contact problem.  相似文献   

2.
This article reviews the behavior of materials made up of a large assemblage of solid particles under rapid and quasi static deformations. The focus is on flows at relatively high concentrations and for conditions when the interstitial fluid plays an insignificant role. The momentum and energy exchange processes are then primarily governed by interparticle collisions and Coulomb-type frictional contact. We first discuss some physical behavior —dilatancy, internal friction, fluidization and particle segregation — that are typical to the understanding of granular flows. Bagnold's seminal Couette flow experiments and his simple stress analysis are then used to motivate the first constitutive theories that use a microstructural variable — the fluctuation energy or granular temperature — governing the subscale fluctuating motion. The kinetic theories formalize the derivation of the field equations of bulk mass, momentum and energy, and permit derivation of constitutive relations for stress, flux of fluctuation energy and its dissipation rate for simple particle assemblages and when frictional rubbing contact can be ignored. These statistical considerations also show that formulation of boundary conditions needs special attention. The frictional-collisional constitutive behavior in which both Coulomb-type rubbing contact and collisional encounters are significant are discussed. There is as yet no rigorous formulation. We finally present a phenomenological approach that describes rapid flows of granular materials under simultaneous transport of heat and close with a summary of stability analyses of the basic flow down an inclined plane.Dedicated to Professor Dr.-Ing. Franz Gustav Kollmann on the occasion of his sixtieth brithday  相似文献   

3.
4.
This paper is devoted to the formulation of a micromechanics-based constitutive model for granular materials under relatively low confining pressure. The constitutive formulation is performed within the general framework of homogenization for granular materials. However, new rigorous stress localization laws are proposed. Some local constitutive relations are established under the consideration of irreversible thermodynamics. Macroscopic plastic deformation is obtained by considering local plastic sliding in a limit number of families of contact planes. The plastic sliding at each contact plane is described by a non-associated plastic flow rule, taking into account pressure sensitivity and normal dilatancy. Nonlinear elastic deformation related to progressive compaction of contacts is also taken into account. Material softening is described by involving damage process related to degradation of microstructure fabric. The proposed model is applied to some typical granular materials (sands). The numerical predictions are compared with experimental data.  相似文献   

5.
连接结构接触界面非线性力学建模研究   总被引:8,自引:7,他引:1  
王东  徐超  胡杰  万强  陈红永 《力学学报》2018,50(1):44-57
连接界面上存在的跨尺度、多物理场和非线性行为是引起结构复杂非线性动力学的主要原因。由于连接界面力学行为的复杂性,以及对连接界面进行直接试验观测的困难,连接界面的力学建模一直是非常具有挑战性的科学问题。本文首先从分析结合面的跨尺度物理机理入手,将名义的光滑平面视作凹凸不平的粗糙面,考虑单个微凸体的黏滑摩擦行为,建立接触载荷与变形的非线性关系,然后采用GW(Greenwood和Williamson, GW)模型数理统计方法建立整个粗糙界面的跨尺度力学模型,并与公开文献中试验结果进行对比。然后考虑连接界面典型非线性特征,提出一种改进的Iwan唯象模型,利用精细有限元方法获得非线性特征结果,采用系统辨识理论建立连接结构的降阶力学模型,并利用有限元结果进行模型验证。结果表明,本文提出的粗糙界面跨尺度模型在法向载荷较小时与试验结果吻合较好,改进的Iwan模型能够较好描述连接界面非线性特征,并与有限元结果吻合较好。   相似文献   

6.
孙吉主  王勇 《力学季刊》2006,27(3):476-480
基于接触面的宏、细观物理特征,建立了单调加载条件下钙质砂与结构接触面的弹塑性增量本构关系。从接触面的宏观条件上考虑,该模型将弹性模量取为法向压力的指数函数,采用非关联流动法则和Mohr-columb屈服函数,以及切向塑性功为硬化参量,适用于多数接触摩擦问题。在细观上将滑动面抽象为锯齿面,同时将摩擦系数取为塑性功的双曲线函数,以考虑钙质砂颗粒破碎对接触面力学特性的影响。模型概念简单、参数较少,通过理论计算与钙质砂拉拔试验结果比较,显示了模型的合理性。  相似文献   

7.
A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem.  相似文献   

8.
Constitutive modeling of ice in the high strain rate regime   总被引:1,自引:0,他引:1  
The objective of the present work is to propose a constitutive model for ice by considering the influence of important parameters such as strain rate dependence and pressure sensitivity on the response of the material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage mechanics framework. The damage is taken to occur in the form of distributed cracking within the material during impact which is consistent with experimental observations. At the point of failure, the material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive model is implemented in a general purpose finite element code using an explicit formulation. Several single element tests under uniaxial tension and compression, as well as biaxial loading are conducted in order to understand the performance of the model. Few large size simulations are also performed to understand the capability of the model to predict brittle damage evolution in un-notched and notched three point bend specimens. The proposed model predicts lower strength under tensile loading as compared to compressive loading which is in tune with experimental observations. Further the model also asserts the strain rate dependency of the strength behavior under both compressive as well as tensile loading, which also corroborates well with experimental results.  相似文献   

9.
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem.  相似文献   

10.
A multibody frictional mortar contact formulation (Gitterle et al., 2010) is extended for the simulation of solids undergoing finite strains with inelastic material behavior. The framework includes the modeling of finite strain inelastic deformation, the numerical treatment of frictional contact conditions and specific finite element technology. Several well-established and recent models are employed for each of these building blocks to capture the distinct physical aspects of the deformation behavior. The approach is based on a mortar formulation and the enforcement of contact constraints is realized with dual Lagrange multipliers. The introduction of nonlinear complementarity functions into the frictional contact conditions combined with the global equilibrium leads to a system of nonlinear equations, which is solved in terms of the semi-smooth Newton method. The resulting method can be interpreted as a primal–dual active set strategy (PDASS) which deals with contact nonlinearities, material and geometrical nonlinearities in one iterative scheme. The consistent linearization of all building blocks of the framework yields a robust and highly efficient approach for the analysis of metal forming problems. The effect of finite inelastic strains on the solution behavior of the PDASS method is examined in detail based on the complementarity parameters. A comprehensive set of numerical examples is presented to demonstrate the accuracy and efficiency of the approach against the traditional node-to-segment penalty contact formulation.  相似文献   

11.
The silica-filled rubber material presented in this paper exhibits nonlinear elasticity, nonlinear rate dependence and stress-softening effect under cyclic loading. In order to model the material behavior in a finite element code, the internal state variable concept is considered for finite deformation viscoelasticity. Moreover, the so-called Mullins' effect is taken into account by using a discontinuous damage concept. A total Lagrangian formulation with incompressibility constraint is adopted in the finite element code. The constitutive equations with their optimized set of parameters are validated by comparing the simulated results with experimental data. This result is very useful for the fatigue lifetime analysis of the investigated silica-filled rubber material.  相似文献   

12.
The rheological behavior and a constitutive relationship of elastic-visco-plasticity for polymers are investigated in this paper. Several sets of experiments have been carried out to determine the material constants and to test the validity of constitutive formulation. It is shown that the theoretical profiles are in good agreement with experimental results. The rheological characteristic and the strain-rate effect of model are analyzed by computer simulation.The project is supported by the National Natural Science Foundation of China  相似文献   

13.
A computer based formulation for the analysis of mechanical systems is investigated as a feasible method to predict the impact response of complex structural systems. A general methodology for the dynamic analysis of rigid-flexible multibody systems using a number of redundant Cartesian coordinates and the method of the Lagrange multipliers is presented. The component mode synthesis is then used to reduce the number of flexible degrees of freedom. In many impact situations, the individual structural members are overloaded giving rise to plastic deformations in highly localized regions, called plastic hinges. This concept is used by associating revolute nonlinear actuators with constitutive relations corresponding to the collapse behavior of the structural components. The contact of the system components is described using a continuous force model based on the Hertz contact law with hysteresis damping. The effect and importance of structural damping schemes in flexible bodies are also addressed here. Finally, the validity of this methodology is assessed by comparing the results of the proposed models with those obtained in different experimental tests where: a beam collides transversally with a rigid block; a torque box impacts a rigid barrier.  相似文献   

14.
The main purpose of this paper is to complete the works presented by Andrieux and Varé (2002) and El Arem et al. (2003) by taking into account the effects of shearing in the constitutive equations of a beam cracked section in bi-axial flexure. The paper describes the derivation of a lumped cracked beam model from the three-dimensional formulation of the general problem of elasticity with unilateral contact conditions on the crack lips. Properties of the potential energy and convex analysis are used to reduce the three-dimensional computations needed for the model identification, and to derive the final form of the elastic energy that determines the nonlinear constitutive equations of the cracked transverse section. We aim to establish a relation of behavior between the applied forces and the resulting displacements field vectors, which is compatible with the beams theory in order to allow the model exploitation for shafts dynamics analysis. The approach has been applied to the case of a cracked beam with a single crack covering the half of its circular cross section.  相似文献   

15.
The axial compressive failure of aligned fiber composites triggered by kink band instabilities is the topic of investigation herein. Particular emphasis is put on the accurate prediction of the post-failure regime, where fiber composites are known to exhibit substantial post-failure strength. In this regard, a previous analytical model, based on geometric relationships and energy principles, is enhanced by consistently taking into account material non-linearities. Therefore, a non-linear constitutive law is introduced herein based on a newly developed exponential formulation. This non-linear constitutive law is subsequently implemented into the stress–strain response in interlaminar shearing as well as the compression response. The model enhancements are validated against published experimental data yielding excellent comparisons. Furthermore, the relevance of modeling non-linear material behavior in interlaminar dilation and bending is assessed using a bilinear constitutive law. However, implementing non-linear material behavior does not yield any improvements and can therefore be neglected.  相似文献   

16.
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the visco- elastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm.  相似文献   

17.
This paper presents a comprehensive computational model for predicting the nonlinear response of frictional viscoelastic contact systems under thermo-mechanical loading and experience geometrical nonlinearity. The nonlinear viscoelastic constitutive model is expressed by an integral form of a creep function, whose elastic and time-dependent properties change with stresses and temperatures. The thermo-viscoelastic behavior of the contacting bodies is assumed to follow a class of thermo-rheologically complex materials. An incremental-recursive formula for solving the nonlinear viscoelastic integral equation is derived. Such formula necessitates data storage only from the previous time step. The contact problem as a variational inequality constrained model is handled using the Lagrange multiplier method for exact satisfaction of the inequality contact constraints. A local nonlinear friction law is adopted to model friction at the contact interface. The material and geometrical nonlinearities are modeled in the framework of the total Lagrangian formulation. The developed model is verified using available benchmarks. The effectiveness and accuracy of the developed computational model is validated by solving two thermo-mechanical contact problems with different natures. Moreover, obtained results show that the mechanical properties and the class of thermo-rheological behavior of the contacting bodies as well as the coefficient of friction have significant effects on the contact response of nonlinear thermo-viscoelastic materials.  相似文献   

18.
Numerical modeling of ice behavior under high velocity impacts   总被引:1,自引:0,他引:1  
In this work a constitutive relation for ice at high strain rates and an algorithm for its numerical integration are developed. This model is based on the Drucker–Prager plasticity criteria, which allows a different behavior in tension and in compression. In addition a failure criteria, based on pressure cut-offs, is implemented to describe the ice damage. In order to validate the constitutive model, numerical simulations were compared with experimental results, in which ice cylinders were impacted against a steel plate, allowing the measurement of the contact load. Three different numerical solvers are used in order to analyze its performance to appropriately modeling the ice behavior.  相似文献   

19.
The focus of this study is the development of an elastic-viscoplastic, three-dimensional, finite-deformation constitutive model to describe the large deformation behavior of bulk metallic glass (BMG) composite. A macroscopic theoretical formulation is proposed based on thermodynamic considerations to describe the response at ambient temperature and pressure, as well as at different strain rates. A constitutive equation is derived using the principle of thermodynamics and the augmenting of free energy. This is done by assuming that deformation within the constituent phases of the composite is affine; kinetic equations defining plastic shear and evolution of free volume concentration are then derived. The constitutive model is subsequently implemented in a finite-element program (Abaqus/Explicit) via a user-defined material subroutine. Numerical predictions are compared with experimental results from tests on La-based in situ BMG composite (La–Al–Cu–Ni) specimens cast in-house; this demonstrates that the model is able to describe the material behavior observed.  相似文献   

20.
We present a constitutive model for stochastically distributed fiber reinforced visco-active tissues, where the behavior of the reinforcement depends on the relative orientation of the electric field. Following our previous works, for the passive behaviors we adopt a second order approximation of the strain energy density associated to the parameters of the fiber distribution. Consistently, we also assume that the active behavior accounts for the stochastic distribution of the fibers. The ensuing mechanical quantities result to be dependent on two average structure tensors. We introduce an extended Helmholtz free energy density characterized by the inclusion of a directional active potential, dependent on a stochastic anisotropic permittivity tensor. The permittivity tensor is expanded in Taylor series up to the second order, allowing to obtain an approximated active potential with the same structure of the passive Helmholtz free energy density. In particular, the explicit expression of active stress and stiffness are dependent on the two average structure tensors that characterize the passive response. Anisotropy follows from the fiber distribution and inherits its stochastic nature through statistics parameters. The active fiber distributed model is extended here to viscous materials by including the contribution of a dual dissipation potential in the variational formulation of the constitutive updates. Additionally, we present a computational example of application of the electro-viscous-mechanical material model by simulating peristaltic contractions on a portion of human intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号