首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient thermal stress crack problem for two bonded dissimilar materials subjected to a convective cooling on the surface containing an edge crack perpendicular to the interface is considered. The problem is solved using the principle of superposition and the uncoupled quasi-static thermoelasticity. The crack problem is formulated by applying the transient thermal stresses obtained from the uncracked medium with opposite sign on the crack surfaces to be the only external loads. Fourier integral transform is used to solve the perturbation problem resulting in a singular integral equation of Cauchy type in which the derivative of the crack surface displacement is the unknown function. The numerical results of the stress intensity factors are calculated for both the edge crack and the crack terminating at the interface using two different composite materials and illustrated as a function of time, crack length, coefficient of heat transfer, and the thickness ratio.  相似文献   

2.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

3.
IntroductionCompositematerialconsistingofapiezoelectricphaseandapiezomagneticphasehasdrawnsignificantinterestinrecentyears,duetotherapiddevelopmentinadaptivematerialsystems .Itshowsaremarkablylargemagnetoelectriccoefficient,thecouplingcoefficientbetweenst…  相似文献   

4.
The interface crack problem of a bimaterial thermopiezoelectric solid was treated byapplying the extended version of Strohs formalism and singular integral equation approach. Theinterface crack considered is subjected to combined thermal, mechanical and electric loads.Under the applied loading, the interface crack is assumed to be partially opened. Formulation ofthe problem results in a set of singular integral equations which are solved numerically. Thestudy shows that the contact zone is extremely small in comparison with the crack length. Basedon the formulation, some physically meaningful quantities of interest such as stress intensityfactors and size of contact zone for a particular material group are analyzed.  相似文献   

5.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

6.
双材料中平片裂纹问题的超奇异积分方程解法   总被引:1,自引:0,他引:1  
利用三维断裂力学的超奇异积分方程方法,对双材料空间中重直于界面的平片裂纹Ⅰ型问题进行了研究。首先根据双材料空间的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下导出了以裂纹面位罗间断为未知函数的超奇异积分方程,并为其建立了数值法。在此基础上,讨论了用裂纹面位移问题计算应力强度因子的方法。最后用此计算了几个典型的Ⅰ型下片裂纹问题的应力强度因子,其数值结果令人满意。  相似文献   

7.
We consider boundary value problem in which an elastic layer containing a finite length crack is under compressive loading. The crack is parallel to the layer surfaces and the contact between crack surfaces are either frictionless or with adhesive friction or Coulomb friction.Based on fourier integral transformation techniques the solution of the formulated problems is reduced to the solution of a singular integral equation, then, using Chebyshev’s orthogonal polynomials, to an infinite system of linear algebraic equations. The regularity of these equations is established. The expressions for stress and displacement components in the elastic layer are presented. Based on the developed analytical algorithm, extensive numerical investigations have been conducted.The results of these investigations are illustrated graphically, exposing some novel qualitative and quantitative knowledge about the stress field in the cracked layer and their dependence on geometric and applied loading parameters. It can be seen from this study that the crack tip stress field has a mode II type singularity.  相似文献   

8.
The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack, the permeable crack (the crack gap is full of NaCI solution), and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them.  相似文献   

9.
In this paper, the behavior of a Griffith crack at the interface of a layer boned to a half plane subjected to a uniform tension is investigated by use of the Schmidt method under the assumptions that the effect of the crack surface overlapping very near the crack tips is negligible and also there is a sufficiently large component of mode-I loading so that the crack essentially remains open. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the crack. As a special case in our solution, we also give the solution of the ordinary crack in homogeneous materials. Contrary to the previous solution of the interface crack problem, it is found that the stress singularities of the present interface crack solution are similar with ones for the ordinary crack in homogeneous materials.  相似文献   

10.
An analytical method is developed for scattering of SH-waves and dynamic stress concentration by an interacting interface crack and a circular cavity near bimaterial interface. A suitable Green‘s function is contructed, which is the fundamental solution of the displacement field for an elastic half space with a circular cavity impacted by an out-plane harmonic line source loading at the horizontal surface. First, the bimaterial media is divided into two parts along the horizontal interface, one is an elastic half space with a circular cavity and the other is a complete half space. Then the problem is solved according to the procedure of combination and by the Green‘s function method. The horizontal surfaces of the two half spaces are loaded with undetermined anti-plane forces in order to satisfy continuity conditions at the linking section, or with some forces to recover cracks by means of crack-division technique. A series of Fredholm integral equations of first kind for determining the unknown forces can be set up through continuity conditions as expressed in terms of the Green‘s function. Moreover, some expressions are given in this paper, such as dynamic stress intensity factor (DSIF) at the tip of the interface crack and dynamic stress concentration factor (DSCF) around the circular cavity edge. Numerical examples are provided to show the influences of the wave numbers, the geometrical location of the interface crack and the circular cavity, and parameter combinations of different media upon DSIF and DSCF.  相似文献   

11.
An electrically permeable interface crack with a frictionless contact zone at the right crack tip between two semi-infinite piezoelectric spaces under the action of a remote electromechanical loading and a temperature flux is considered. Assuming that all fields are independent on the coordinate x2 co-directed with the crack front, the stresses, the electrical and the temperature fluxes as well as the derivatives of the jumps of the displacements, the electrical potential and the temperature at the interface are presented via a set of analytic functions in the (x1,x3)-plane with a cut along the crack. Due to this representation firstly an auxiliary problem concerning the direction of the heat flux permitting a transition from a perfect thermal contact to a separation has been solved for a piezoelectric bimaterial. Besides, an inhomogeneous combined Dirichlet–Riemann boundary value problem has been formulated and solved exactly for the above mentioned interface crack. Stress and electrical displacements intensity factors are found in a clear analytical form which is especially easier for a small contact zone length. A simple equation and a closed form analytical formula for the determination of the real contact zone length have been derived and compared with the associated equation of the classical (oscillating) interface crack model defining the zone of crack faces interpenetration. For a numerical illustration of the obtained results a bimaterial cadmium selenium/glass has been used, and the influence of the heat flux upon the contact zone length and the associated stress intensity factor has been shown.  相似文献   

12.
A plane problem for an electrically conducting interface crack in a piezoelectric bimaterial is studied. The bimaterial is polarized in the direction orthogonal to the crack faces and loaded by remote tension and shear forces and an electrical field parallel to the crack faces. All fields are assumed to be independent of the coordinate co-directed with the crack front. Using special presentations of electromechanical quantities via sectionally-analytic functions, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical and electrical parameters are derived. Also, a contact zone solution is obtained as a particular case. For the determination of the contact zone length, a simple transcendental equation is derived. Stress and electric field intensity factors and, also, the contact zone length are found for various material combinations and different loadings. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Electrically permeable conditions in the crack region are considered as well and matching of different crack models has been performed.  相似文献   

13.
In this paper, the behavior of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness subjected to an uniform tension is resolved using a somewhat different approach, named the Schmidt method. The Fourier transform technique is applied and a mixed boundary value problem is reduced to two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surface. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the cracks. It can be obtained that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. Contrary to the previous solution of the interface crack, it is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.  相似文献   

14.
纤维增强复合材料圆柱型界面裂纹分析   总被引:2,自引:1,他引:2  
王清  嵇醒  王远功 《力学学报》1997,29(4):421-428
以裂纹面上的位错函数为未知量将圆柱型界面裂纹问题化成一组奇异积分方程的求解问题.应用Muskhelishvili的奇异积分方程理论,分析了圆柱型界面裂纹尖端应力场.针对裂纹尖端分别存在和不存在接触区两种情况,确定了裂纹尖端应力场的奇异性.利用数值方法计算了圆柱型界面裂纹尖端接触区尺寸对剪应力强度因子的影响.  相似文献   

15.
In this paper, the stress-intensity factors for two collinear cracks in a composite bonded by an isotropic and an anisotropic half-plane were calculated. The cracks are paralell to the interface, and the crack surfaces are loaded by uniform shear stresses. By using Fourier transform, the mixed boundary value problem is reduced to a set of singular integral equations. For solving the integral equations, the crack surface displacements are expanded in triangular series and the unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors for the cracks in the boron-fibre plastics and aluminium joined composite and in carbon-fibre reinforced plastics were calculated numerically.  相似文献   

16.
讨论了拉伸载荷作用下平行于两相材料界面的椭圆平片裂纹问题.首先,使用有限部积分概念和两相材料界面完全接合时的点力基本解导出了一组以裂纹表面位移差为未知函数的超奇异积分方程组.该组方程表明,此时三种裂纹模型同时存在;其次,在数值求解该组方程的过程中,未知函数裂纹表面位移差被近似为位移差的基本密度函数与多项式之积.基本密度函数反映了裂纹前沿应力奇性性态;最后,以拉伸载荷为例,讨论了椭圆平片裂纹与界面的距离、裂纹形状比和不同材料组合对应力强度因子的影响,并以图表形式给出。  相似文献   

17.
SH波对双相介质界面附近圆形孔洞的散射   总被引:10,自引:1,他引:10  
建立了求解平面SH波对双相介质界面附近圆形孔洞散射与动应力集中的一种分析方法.利用复变函数与多极坐标的方法构造了一个Green函数,它是在含有圆形孔洞的弹性半空间的水平面上任一点上作用时间谐和的出平面线源荷载的位移解.利用“契合”模型,并根据界面上位移连续性条件,建立了求解SH波对双相介质界面附近圆形孔洞散射的具有弱奇异性的第一类Fredholm型积分方程.给出了圆孔周边上动应力集中系数的表达式.作为算例,分析了在界面一侧或界面两侧附近具有圆形孔洞时SH波的散射,并讨论了入射波波数、不同的材料组合以及孔心至界面的距离对动应力集中的影响.  相似文献   

18.
This paper considers a frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by means of a rigid circular stamp. The problem is reduced to a system of singular integral equations in which the contact stresses and lengths are the unknown functions. Numerical results for the contact stresses and the contact lengths are given by depending on various fibre orientations.  相似文献   

19.
By using Fourier transformation the boundary problem of periodical interfacial cracks in anisotropic elastoplastic bimaterial was transformed into a set of dual integral equations and then it was further reduced by means of definite integral transformation into a group of singular equations. Closed form of its solution was obtained and three corresponding problems of isotropic bimaterial, of a single anisotropic material and of a bimaterial of isotropy- anisotropy were treated as the specific cases. The plastic zone length of the crack tip and crack openning displacement ( COD) decline as the smaller yield limit of the two bonded materials rises, and they were also determined by crack length and the space between two neighboring cracks . In addition , COD also relates it with moduli of the materials .  相似文献   

20.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号