首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a hybrid finite element/boundary element (FEBE) method for periodic structures. Periodic structures have been efficiently analyzed by solving for a single unit cell utilizing Floquet’s theorem. However, most of the previous works require periodic meshes to properly impose the boundary conditions on the outer surfaces of the unit cell. To alleviate this restriction, the interior penalty method is adopted and implemented in this work. Also, the proper treatment of the boundary element part is addressed to account for the non-conformity of the boundary element mesh. Another ingredient of this work is the use of the efficient boundary element computation, accelerated by the Ewald transformation for the calculation of the periodic Green’s function. Finally, the method is validated through examples which are discretized without the constraint of a periodic mesh.  相似文献   

2.
3.
In this paper we present a novel discretization technique for the simulation of premixed combustion based on a locally enriched finite element method (FEM). Use is made of the G-function approach to premixed combustion in which the domain is divided into two parts, one part containing the burned and another containing the unburned gases. A level-set or G-function is used to define the flame interface separating burned from unburned gases. The eXtended finite element method (X-FEM) is employed, which allows for velocity and pressure fields that are discontinuous across the flame interface. Lagrange multipliers are used to enforce the correct essential interface conditions in the form of jump conditions across the embedded flame interface. A persisting problem with the use of Lagrange multipliers in X-FEM has been the discretization of the Lagrange multipliers. In this paper the distributed Lagrange multiplier technique is adopted. We will provide results from a spatial convergence analysis showing good convergence. However, a small modification of the interface is required to ensure a unique solution. Finally, results are presented from the application of the method to the problems of moving flame fronts, the Darrieus–Landau instability and a piloted Bunsen burner flame.  相似文献   

4.
5.
In this paper, we propose a numerical method to obtain an effective electrical resistivity of heterogeneous media under the influence of a direct current. The heterogeneous multiscale finite element method is used to solve the direct problem of simulation of an electrostatic field. The computational experiments using the developed software complex showed that even the small inclusion concentrations define the effective resistivity of the media. In addition, the change in the localization, orientation, and geometrical shape of inclusions also leads to a significant change of the effective properties of the media.  相似文献   

6.
Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.  相似文献   

7.
The present work is concerned with the effects of viscous dissipation and heat source/sink on a three-dimensional magnetohydrodynamic boundary layer axisymmetric stagnation flow, and the heat transfer of an electrically conducting fluid over a sheet, which shrinks or stretches axisymmetrically in its own plane where the line of the symmetry of the stagnation flow and that of the shrinking (stretching) sheet are, in general, not aligned. The governing equations are transformed into ordinary differential equations by using suitable similarity transformations and then solved numerically by a shooting technique. This investigation explores the conditions of the non-existence, existence and uniqueness of the solutions of the similar equations numerically. It is noted that the range of the velocity ratio parameter, where the similarity solution exists, is increased with the increase of the value of the magnetic parameter. Furthermore, the study reveals that the non-alignment function affects the shrinking sheet more than the stretching sheet. In addition, the numerical results of the velocity profile, temperature profile, skin-friction coefficient, and rate of heat transfer at the sheet are discussed in detail with different parameters.  相似文献   

8.
A computational methodology is developed to efficiently perform uncertainty quantification for fluid transport in porous media in the presence of both stochastic permeability and multiple scales. In order to capture the small scale heterogeneity, a new mixed multiscale finite element method is developed within the framework of the heterogeneous multiscale method (HMM) in the spatial domain. This new method ensures both local and global mass conservation. Starting from a specified covariance function, the stochastic log-permeability is discretized in the stochastic space using a truncated Karhunen–Loève expansion with several random variables. Due to the small correlation length of the covariance function, this often results in a high stochastic dimensionality. Therefore, a newly developed adaptive high dimensional stochastic model representation technique (HDMR) is used in the stochastic space. This results in a set of low stochastic dimensional subproblems which are efficiently solved using the adaptive sparse grid collocation method (ASGC). Numerical examples are presented for both deterministic and stochastic permeability to show the accuracy and efficiency of the developed stochastic multiscale method.  相似文献   

9.
Spectral finite element methods are used to compute exact vibration solutions of structural models at specific frequencies. The applicability of these methods to certain areas of structural dynamics is limited by two major factors: the lack of separate structural operators (mass, damping, and stiffness matrices), and the subsequent difficulty in computing mode shapes via eigenvalue decomposition. In the work presented in this article, a method is investigated to accurately calculate spectral finite elements while overcoming these limitations. The approach incorporates a two-dimensional, discrete solution utilizing a wavenumber-based gridding technique to compute frequency-dependent local mass, damping, and stiffness matrices which can be assembled into the global structural operators. Computed models are able to be used for precise vibration analysis as well as modal analysis via eigenvalue decomposition of the structural operators.  相似文献   

10.
In this work, we present a stabilized formulation to solve the inductionless magnetohydrodynamic (MHD) problem using the finite element (FE) method. The MHD problem couples the Navier–Stokes equations and a Darcy-type system for the electric potential via Lorentz’s force in the momentum equation of the Navier–Stokes equations and the currents generated by the moving fluid in Ohm’s law. The key feature of the FE formulation resides in the design of the stabilization terms, which serve several purposes. First, the formulation is suitable for convection dominated flows. Second, there is no need to use interpolation spaces constrained to a compatibility condition in both sub-problems and therefore, equal-order interpolation spaces can be used for all the unknowns. Finally, this formulation leads to a coupled linear system; this monolithic approach is effective, since the coupling can be dealt by effective preconditioning and iterative solvers that allows to deal with high Hartmann numbers.  相似文献   

11.
12.
陈龙超  范文慧 《中国物理 B》2012,21(10):104101-104101
Interdigitated finger capacitance of a continuous-wave terahertz photomixer is calculated using the finite element method.For the frequently used electrode width(0.2 μm) and gap width(1.8 μm),the finger capacitance increases quasi-quadratically with the number of electrodes increasing.The quasi-quadratic dependence can be explained by a sequence of lumped capacitors connected in parallel.For a photomixer composed of 10 electrodes and 9 photoconductive gaps,the finger capacitance increases as the gap width increases at a small electrode width,and follows the reverse trend at a large electrode width.For a constant electrode width,the finger capacitance first decreases and then slightly increases as the gap broadens until the smallest finger capacitance is formed.We also investigate the finger capacitances at different electrode and gap configurations with the 8 μm× 8 μm photomixer commonly used in previous studies.These calculations lead to a better understanding of the finger capacitance affected by the finger parameters,and should lead to terahertz photomixer optimization.  相似文献   

13.
A three-dimensional model is presented to simulate the larynx during vocalization. The finite element method is used to calculate the airflow velocity and pressure along the larynx as well as tissue displacement. It is assumed that the larynx tissue is transversely isotropic and divided into three tissues: cover, ligament, and body. A contact-impact algorithm is incorporated to deal with the physics of the collision between both true vocal folds. The results show that the simulated larynx can reproduce the vertical and horizontal phase difference in the tissue movements and that the false vocal folds affect the pressure distribution over the larynx surfaces. The effects of exciting the larynx with different pressure drops are also investigated.  相似文献   

14.
A numerical formulation to solve the MHD problem with thermal coupling is presented in full detail. The distinctive feature of the method is the design of the stabilization terms, which serve several purposes. First, convective dominated flows in the Navier–Stokes and the heat equation can be dealt with. Second, there is no restriction in the choice of the interpolation spaces of all the variables and, finally, flows highly coupled with the magnetic field can be accounted for. Different aspects related to the design of the final fully discrete and linearized algorithm are also discussed.  相似文献   

15.
The hierarchical finite element method is used to determined the natural frequencies and modes of a flat, rectangular plate. Ten different boundary conditions—including free edges and point supports—are considered in this paper. Extensive results are presented for each case (including the variation of frequency with the aspect ratio and the Poisson ratio), and these are shown to be in very good agreement with the work of other investigators. This confirms both the applicability and accuracy of solution of the HFEM to problem of this type.  相似文献   

16.
The hysteresis phenomena of ferroelectric/ferroelastic material in polarization procedure are investigated. Some assumptions are presented based on the published experimental data. The electrical yielding criterion, mechanical yielding criterion and isotropic hardening model are established. The flow theory in incremental forms in polarization procedure is presented. The nonlinear constitutive law for electrical-mechanical coupling is proposed phenomenologically. Finally, the nonlinear constitutive law expressed in a form of matrices and vectors, which is immediately associated with finite element analysis, is formulated. In the example problem of a rectangular specimen subjected to a uniaxial electric field, the procedure from virgin state to fully polarized state is simulated. Afterward, a uniaxial compressive loading is applied to depolarizing the specimen. Results are in agreement with the experimental data.  相似文献   

17.
Domains of ‘exotic’ boundary shape are of interest in several technological applications—acoustic and electromagnetic waveguides, solid propellant rocket cross-sections, printed circuit boards, etc.The present paper describes some experiments performed to determine the eigenvalues of a vibrating, ideal membrane.It is shown that the finite element method yields results which are in very good agreement with values determined by means of an analytical approach in the case of a membrane of a cardioidal shape.  相似文献   

18.
An analysis is given on the finite element method (FEM) for calculating the various parameters of optical modulators and a computer program is written to solve the finite element equation. Based on this method, a Mach-Zehnder type electro-optic modulator with coplanar waveguide (CPW) electrode is designed and fabricated. When compared with the Fourier series method, small differences on the 3-dB bandwidth, characteristic impedance and half-wave voltage, etc. are obtained.  相似文献   

19.
《Ultrasonics》2005,43(1):13-19
A rapid identification of the piezoelectric material constants for a piezoelectric transducer is proposed. The validity of a three-dimensional finite element routine was confirmed experimentally. The asymptotic waveform evaluation (AWE) was adopted for a fast frequency sweep of the finite element analysis. The three-dimensional finite element method with an AWE and a design sensitivity method was used for a material inversion scheme of piezoelectric transducers. In order to confirm the inversion routine of the material constants, the mechanical displacements, which mean the mode shape, were calculated along the vertical and lateral position of the sample transducer.  相似文献   

20.
Joo HW  Lee CH  Jung HK 《Ultrasonics》2004,43(1):13-19
A rapid identification of the piezoelectric material constants for a piezoelectric transducer is proposed. The validity of a three-dimensional finite element routine was confirmed experimentally. The asymptotic waveform evaluation (AWE) was adopted for a fast frequency sweep of the finite element analysis. The three-dimensional finite element method with an AWE and a design sensitivity method was used for a material inversion scheme of piezoelectric transducers. In order to confirm the inversion routine of the material constants, the mechanical displacements, which mean the mode shape, were calculated along the vertical and lateral position of the sample transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号