首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A two-dimensional contact problem of a trapezium shaped punch pressed into a frictionless, elastically similar half-plane and subject sequentially to the normal load and bending moment is considered. The model of a tilted flat punch is used to evaluate the pressure distribution and the contact deformation within the contact zone. Comparisons of the results generated by the analytical technique to those computed by the finite element method demonstrate the high level of accuracy attained by both methods. The presented numerical results illustrate the effects of the normal load, bending moment, and internal angles of the punch geometry on the contact stresses.  相似文献   

2.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

3.
The problem of a rigid punch contacting with a finite graded layer on a rigid substrate is investigated within the framework of steady-state plane strain thermoelasticity, in which heat generated by contact friction is considered with a constant friction coefficient and inertia effects are neglected. The material properties of the graded layer vary according to an exponential function in the thickness direction. Fourier integral transform method and transform matrix approach are employed to reduce the current thermocontact problem to the second kind of Cauchy-type singular integral equation. Distributions of the contact pressure and the in-plane stress under the prescribed thermoelastic environment with different parameter combinations, including ratio of shear moduli, relative sliding speed, friction coefficient and thermal parameters are obtained and analyzed, as well as the stress singularity and the stress intensity factors near the contact edges. The results should be helpful for the design of surfaces with strong wear resistance and novel graded materials for real applications.  相似文献   

4.
This paper investigates the two-dimensional frictionless contact problem of a functionally graded magneto-electro-elastic materials (FGMEEMs) layered half-plane under a rigid flat or a cylindrical punch. It is assumed that the punch is a perfect electro-magnetic conductor with a constant electric potential and a constant magnetic potential. The magneto-electro-elastic (MEE) properties of the FGMEEM layer vary exponentially along the thickness direction. Using the Fourier transform technique, the contact problem can be reduced to Cauchy singular integral equations, which are then solved numerically to determine the normal contact stress, electric displacement and magnetic induction on the contact surface. Numerical results show that the gradient index, punch geometry and magneto-electro-mechanical loads have a significant effect on the contact behavior of FGMEEMs.  相似文献   

5.
The two-dimensional thermoelastic sliding frictional contact of functionally graded material (FGM) coated half-plane under the plane strain deformation is investigated in this paper. A rigid punch is sliding over the surface of the FGM coating with a constant velocity. Frictional heating, with its value proportional to contact pressure, friction coefficient and sliding velocity, is generated at the interface between the punch and the FGM coating. The material properties of the coating vary exponentially along the thickness direction. In order to solve the heat conduction equation analytically, the homogeneous multi-layered model is adopted for treating the graded thermal diffusivity coefficient with other thermomechanical properties being kept as the given exponential forms. The transfer matrix method and Fourier integral transform technique are employed to convert the problem into a Cauchy singular integral equation which is then solved numerically to obtain the unknown contact pressure and the in-plane component of the surface stresses. The effects of the gradient index, Peclet number and friction coefficient on the thermoelastic contact characteristics are discussed in detail. Numerical results show that the distribution of the contact stress can be altered and therefore the thermoelastic contact damage can be modified by adjusting the gradient index, Peclet number and friction coefficient.  相似文献   

6.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

7.
The contact problem of the interaction of a rigid punch with a viscoelastic half-plane is considered. The dependence of the displacement of the boundary of half-plane on the normal load applied to it is determined, and the integral equation for determining the contact pressure is derived and solved by the method of “small λ”. Distributions of contact pressures under the punch are graphically represented.  相似文献   

8.
The dynamic contact problem of a plane punch motion on the boundary of an elastic half-plane is considered. The punch velocity is constant and does not exceed the Rayleigh wave velocity. The moving punch deforms the elastic half-plane penetrating into it so that the punch base remains parallel to itself at all times. The contact problem is reduced to solving a two-dimensional integral equation for the contact stresses whose two-dimensional kernel depends on the difference of arguments in each variable. A special approximation to the kernel is used to obtain effective solutions of the integral equation. All basic characteristics of the problem including the force of the punch elastic action on the elastic half-plane and the moment stabilizing the punch in the horizontal position in the process of penetration are obtained. A similar problem was considered in [1] and earlier in the “mode of steady-state motions” in [2, 3] and in other publications.  相似文献   

9.
The known analytical contact solution for the stress field induced by a rigid, square-ended punch, sliding on an elastic half-plane defines the stress state everywhere in the half-plane. An asymptotic approach is then used to determine the characteristic stress field at the edge of the contact, which is matched with the contact solution. Hence, the regions over which the asymptotic solution is valid are found. Using a method analogous to the crack-tip stress field, a generalised stress intensity factor is defined, with the aim of providing a single variable characterisation of the stress state at the punch corner. The crack initiation process zone for a fretting fatigue crack is therefore captured, and the conditions for small scale yielding explicitly found.  相似文献   

10.
In the contact interaction between elastic bodies with friction taken into account, the contact region splits, as a rule, into adhesion and sliding regions {xc[1]}. Contact with adhesion and sliding was first considered by L. A. Galin {xc[2]} in the problem of indentation of a punch with a rectilinear foundation into an elastic half-plane, who obtained an approximate solution of this problem [{xc2}, {xc3}]. Galin's problem was further studied in [{xc4}–{xc9}].  相似文献   

11.
Both of the frictional heat and thermal contact resistance have a grave responsibility for the localized high temperature (hot spots) at the contact region, which is known as one of the most dangerous appearances in the brakes systems. In this paper, we study the thermoelastic instability (TEI) of a functionally graded material (FGM) half-plane sliding against a homogeneous half-plane at the in-plane direction. The interaction of the frictional heat and thermal contact resistance is taken into account in the TEI analysis. The material properties of the FGM half-plane are supposed to follow the exponential function along the thickness direction. The coupled TEI problem of FGMs is solved by using the perturbation method. The frictionally excited TEI of FGMs is also considered by neglecting the effect of the thermal contact resistance. The results show that the thermal contact resistance, sliding speed and gradient index have significant influence on the TEI. It is found that the variation of the gradient index of FGMs can increase the critical sliding speed and critical heat flux, and therefore improve the TEI of the sliding system.  相似文献   

12.
The problem of a tilted flat punch having a rounded edge, and with a sufficiently large angle of tilt for contact to be lost along the flat face, is considered. A complete solution to the contact problem, within the context of an elastic half-plane formulation, is derived, including the effects of a shearing force either sufficient or insufficient to cause sliding. The solution is then modified by making the punch semi-infinite in extent, so as to render it effective as an asymptote useful in both quantifying fretting damage, and in improving the precision of approximate numerical solutions. The asymptote is then applied to an example problem.  相似文献   

13.
本文求解平面应变状态下磁电弹复合材料半平面和刚性导电导磁圆柱压头的二维微动接触问题。假设压头具有良好的导电导磁性,且表面电势和磁势是常数。微动接触依赖载荷的加载历史,所以首先求解单独的法向加载问题,然后在法向加载问题的基础上求解循环变化的切向加载问题。整个接触区可以分为内部的中心粘着区和两个外部的滑移区,其中滑移区满足Coulomb摩擦法则。利用Fourier积分变换,磁电弹半平面的微动接触问题将简化为耦合的Cauchy奇异积分方程组,然后数值离散为线性代数方程组,利用迭代法求解未知的粘着/滑移区尺寸、电荷分布、磁感应强度、法向接触压力和切向接触力。数值算例给出了摩擦系数、总电荷和总磁感应强度对各加载阶段的表面接触应力、电位移和磁感应强度的影响。  相似文献   

14.
This paper studies the contact vibration problem of an elastic half-space coated with functionally graded materials (FGMs) subject to a rigid spherical punch. A static force superimposing a dynamic time-harmonic force acts on the rigid spherical punch. Firstly, we give the static contact problem of FGMs by a least-square fitting approach. Next, the dynamic contact pressure is solved by employing the perturbation method. Lastly, the dynamic contact stiffness with different dynamic contact displacement conditions is derived for the FGM coated half-space. The effects of the gradient index, coating thickness, internal friction, and punch radius on the dynamic contact stiffness factor are discussed in detail.  相似文献   

15.
Yildirim  B.  Yilmaz  K. B.  Comez  I.  Guler  M. A. 《Meccanica》2019,54(14):2183-2206

With the increasing research in the field of contact mechanics, different types of contact models have been investigated by many researchers by employing various complex material models. To ascertain the orthotropy effect and modeling parameters on a receding contact model, the double frictional receding contact problem for an orthotropic bilayer loaded by a cylindrical punch is taken into account in this study. Assuming plane strain sliding conditions, the governing equations are found analytically using Fourier integral transformation technique. Then, the resulting singular integral equations are solved numerically using an iterative method. The weight function describing the asymptotic behavior of the stresses are investigated in detail and powers of the stress singularities are provided. To control the trustworthiness and correctness of the analytical formulation and to compare the resulting stress distributions and contact boundaries, a numerically efficient finite element method was employed using augmented Lagrange contact algorithm. The aim of this paper is to investigate the orthotropy effect, modeling parameters and coefficients of friction on the surface and interface stresses, surface and interface contact boundaries, powers of stress singularities, weight function and to provide highly parametric benchmark results for tribological community in designing wear resistant systems.

  相似文献   

16.
In previous work about axisymmetric adhesive contact on power-law graded elastic materials, the contact interface was often assumed to be frictionless, which is, however, not always the case in practical applications. In order to elucidate the effect of friction and the coupling between normal and tangential deformations, in the present paper, the problem of a rigid punch with a parabolic shape in non-slipping adhesive contact with a power-law graded half-space is studied analytically via singular integral equation method. A series of closed-form analytical solutions, which include the frictionless and homogeneous solutions as special cases, are obtained. Our results show that, compared with the frictionless case, the interfacial friction tends to reduce the contact area and the indentation depth during adhesion. The magnitude of the coupling effect depends on both the Poisson ratio and the gradient exponent of the half-space. This effect vanishes for homogeneous incompressible as well as for linearly graded materials but becomes significant for auxetic materials with negative Poisson’s ratio. Furthermore, influence of mode mixity on the adhesive behavior of power-law graded materials, which was seldom touched in literature, is discussed in details.  相似文献   

17.
Frictionless indentation of an elastic half-plane by a relatively blunt, symmetric elastic punch at an ar: bitrary speed is analyzed by treating the more general problem of frictionless Hertzian contact between elastic solids. As in the quasi-static problem, the analysis assumes that the solid surface contours are approximately flat. In addition, the contact strip expands at a constant rate and the imposed rigid body motions and surface contours are represented by polynomial curves. Homogeneous function techniques allow analytic solutions to the basic mathematical problem. As an example, the general results are then applied to the uniformly accelerating parabolic punch on a half-plane.  相似文献   

18.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

19.
The solution for a semi-infinite rigid block having a flat face but with a small, shallow edge chamfer, and pressed onto an incompressible half-plane, is considered. The surface traction distribution and internal state of stress under both normal and a monotonically increasing shearing force are found, and the characteristics of the solution explored. As an example it is employed to find the edge-solution for a finite square-ended but chamfered punch in contact with a half-plane.  相似文献   

20.
Galin’s classical work (PMM J Appl Math Mech 9:413–424, 1945) on the contact of a rigid flat-ended indenter with an elastic half-plane with partial slip was the first successful attempt to take into account friction in the problem of normal contact. As Galin was unable to find an exact solution of the formulated problem, the problem of contact with partial slip of a rigid punch with an elastic half-plane was challenged by many researchers. At the same time Galin’s seminal work stimulated development of solutions for other contact problems with friction that feature different punch geometries and different material responses. This paper presents an overview of the developments in the area of elastic contact with partial slip. In the spirit of Galin’s work the focus is placed on contributions with substantial analytical merit.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号