首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

2.
The interaction problem between a screw dislocation and a piezoelectric fiber composite with a semi-infinite wedge crack is investigated in this paper. The piezoelectric media are assumed to be transversely isotropic with the poling direction along the x 3 direction. The screw dislocation considered here involves a Burgers vector parallel to the poling direction with a line force and a line charge being applied at the core of the dislocation. Both cases of the screw dislocation located at the matrix and inclusion are observed. The analytical derivation is based on the complex variable and the conformal mapping methods. The exact solutions are obtained to calculate the forces on the dislocation and the crack-tip stress and electric displacement intensity factors. Based on these results, the anti-shielding and shielding effects for different loadings, material combinations, and geometric configurations are discussed in detail.  相似文献   

3.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

4.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

5.
摘要:研究了穿透圆形夹杂界面的半无限楔形裂纹与裂纹尖端螺型位错的干涉问题。应用复变函数解析延拓技术与奇性主部分析方法,得到了位错位于半圆形夹杂内部时,半无限基体和半圆形夹杂内复势函数的解析解。然后利用保角映射技术得到了穿透圆形夹杂界面的半无限楔形裂纹尖端螺型位错产生的应力场以及作用在位错上的位错力的解析表达式。主要讨论了螺型位错对裂纹的屏蔽效应以及从楔形裂纹尖端发射位错的临界载荷条件。研究结果表明正的螺型位错可以削弱楔形裂纹尖端的应力强度因子,屏蔽裂纹的扩展,屏蔽效应随位错方位角的增大而减小。位错发射所需的无穷远临界应力随发射角的增加而增大,最可能的位错发射角度为零度,直线裂纹尖端位错的发射比楔形裂纹尖端位错的发射更容易,硬基体抑制位错的发射。  相似文献   

6.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

7.
研究了压电双材料界面钝裂纹附近螺型位错的屏蔽效应与发射条件.应用保角变换技术,得到了复势函数与应力场的封闭形式解,讨论了位错方位、双材料电弹常数及裂纹钝化程度对位错屏蔽效应和发射条件的影响.结果表明,Burgers矢量为正的螺型位错可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随位错方位角及位错与裂纹尖端距...  相似文献   

8.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

9.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

10.
The shielding effect and emission condition of a screw dislocation near a blunt crack in elastic elliptical inhomogeneity is dealt with. Utilizing the Muskhelishvili complex variable method, the explicit series form solutions of the complex potentials in the matrix and the inclusion regions are derived. The stress intensity factor and critical stress intensity factor for dislocation emission are also calculated. The influences of the orientation of the dislocation and morphology of the blunt crack as well as the material elastic dissimilarity upon the shielding effect and emission criterion are discussed in detail. As a result, numerical analysis and discussion show that the positive screw dislocation can reduce the stress intensity factor of the crack tip (shielding effect) only when it is located in the certain region. The shielding effect increases with the increase of the shear modulus of the matrix and the curvature radius of the blunt crack tip, but decreases with the increase of dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increment of the emission angle and the curvature radius of the blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as the special cases.  相似文献   

11.
Hao-Peng Song  Cun-Fa Gao 《Meccanica》2012,47(5):1097-1102
The interaction between a screw dislocation and an elastic semi-cylindrical inhomogeneity abutting on a rigid half-plane is investigated. Utilizing the image dislocations method, the closed form solutions of the stress fields in the matrix and the inhomogeneity region are derived. The image force acting on the dislocation is also calculated. The results were used to study the interaction between a screw dislocation and a rigid wedge inhomogeneity with an elastic circular inhomogeneity at the tip by means of conformal mapping. The results show that an unstable equilibrium point of the dislocation near the semi-cylindrical inhomogeneity is found when the inhomogeneity is softer than the matrix. Moreover, the force on the dislocation is strongly affected by the position of the dislocation and the shear modulus of the semi-circular inhomogeneity. Positive screw dislocations can reduce the SIF of the rigid wedge inhomogeneity (shielding effect) only when it located in the lower half-plane. The shielding effect increases with the increase of the shear modulu of both the matrix and the inhomogeneity and increases with the increase of the wedge angle. The shielding effect (or anti-shielding effect) reaches the maximum when the dislocation tends to the wedge inhomogeneity interface.  相似文献   

12.
The interaction between a screw dislocation and a semi-infinite interfacial crack in a transversely isotropic magneto-electro-elastic bi-material is investigated. The dislocation line is perpendicular to the isotropic basal plane of the bi-material. The elastic and electromagnetic fields induced by the dislocation are obtained through the use of the complex variable method together with the superposition scheme. The stress, electric displacement and magnetic intensity factors as well as the image exerted on the dislocation are given explicitly. We find that the intensity factors are expressed in terms of the so-called effective materials and the radial component of the image force is only dependent on the elastic modulus of the material with the dislocation. As an illustrative example, the bi-material that consists of piezoelectric and piezomagnetic phases is analyzed.  相似文献   

13.
运用弹性力学的复势方法,研究了纵向剪切下增强相/夹杂内螺型位错偶极子与含共焦钝裂纹椭圆夹杂的干涉效应,得到了该问题复势函数的封闭形式解答,由此推导出了夹杂区域的应力场、作用在螺型位错偶极子中心的像力和像力偶矩以及裂纹尖端应力强度因子级数形式解。并分析了位错偶极子倾角 、钝裂纹尺寸和材料常数对位错像力、像力偶矩以及应力强度因子的影响。数值计算结果表明:位错像力、像力偶矩以及应力强度因子均随位错偶极子倾角做周期变化;夹杂内部的椭圆钝裂纹明显增强了硬基体对位错的排斥,减弱了软基体对位错的吸引,且对于硬夹杂,位错出现了一个不稳定平衡位置,该平衡位置随钝裂纹曲率的增大不断向界面靠近;变化 值将出现改变位错偶极子对应力强度因子作用方向的临界值。  相似文献   

14.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

15.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

16.
The main objective of this work is the contribution to the study of the piezoelectric structures which contain preexisting defect (crack). For that, we consider a Griffith crack located at the interface of two piezoelectric materials in a semi-infinite plane structure. The structure is subjected to an anti-plane shearing combined with an in-plane electric displacement. Using integral Fourier transforms, the equations of piezoelectricity are converted analytically to a system of singular integral equations. The singular integral equations are further reduced to a system of algebraic equations and solved numerically by using Chebyshev polynomials. The stress intensity factor and the electric displacement intensity factor are calculated and used for the determination of the energy release rate which will be taken as fracture criterion. At the end, numerical results are presented for various parameters of the problem; they are also presented for an infinite plane structure.  相似文献   

17.
The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with an interfacial crack is dealt with. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equilibrium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.  相似文献   

18.
研究了反平面机械载荷和面内电载荷作用下压电体中考虑表面效应时孔边双裂纹问题的断裂特征。基于Gurtin-Murdoch表面理论模型,通过构造映射函数,利用复势电弹理论获得了应力场和电位移场的闭合解答。给出了裂纹尖端应力强度因子、电位移场强因子和能量释放率的解析解。讨论了开裂孔洞几何参数和施加力电载荷对电弹场强因子和能量释放率的影响。  相似文献   

19.
三相压电复合本构模型中的弧形界面裂纹   总被引:5,自引:0,他引:5  
深入研究了三相同心圆柱压电复合本构模型中的弧形绝缘界面裂纹问题。采用复势方法获得了该问题的级数形式的解答,并给出了应力、应变、电位移和电场强度等物理量在全场及界面上的分布,同时推导了裂尖处广义强度因子及裂面张开位移和裂面上电势差的表达式。具体计算表明该级数解答收敛迅速,同时显示出第三相混杂区的影响是不能忽略的。由于裂尖处应力奇异性为-1/2,则这种解答不会出现平面应变状态下界面裂纹裂尖处的振荡奇异性,从而不会产生违反物理实际的裂面相互嵌入现象,则该弹性解答也是建立了坚实的物理基础之上。  相似文献   

20.
I.IntroductionItiswell'knownthatoneofthemostpowerfultoolsinlinearfieldtheoriesistheGreen'sfunction.Fore1asticity,considerableresearchcanbefoundintheliterature.However,theGreen'sfunctionforpiezoe1ectricityisratherlimitedduetotheanisotropyandelectromechanic…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号