首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various approaches have been used for model1ing problems dealing with interaction of acoustic/elastic waves with transversely isotropic cylinders. The authors developed the first mathematical model for the scattering of acoustic waves from transversely isotropic cylinders [Honarvar, F., Sinclair, A.N., 1996. Acoustic wave scattering from transversely isotropic cylinders. Journal of the Acoustical Society of America 100, 57–63.]. In the current paper, this model is used for derivation of the frequency equations of longitudinal and flexural wave propagation in free transversely isotropic cylinders. Consistency of this model with the physics of the problem is demonstrated and a systematic solution to the corresponding equations is developed. Numerical results obtained for a number of transversely isotopic cylinders are used for verification of the mathematical model.  相似文献   

2.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

3.
4.
5.
The boundary conditions at free surface of an incompressible, transversely isotropic elastic half-space are satisfied to obtain the reflection coefficients for the case when outer slowness section is re-entrant. Two quasi-shear waves will be reflected for an angular range of direction of incident wave. The numerical illustrations of reflection coefficients are presented graphically for three arbitrary materials.  相似文献   

6.
According to generalized characteristic theory, a characteristic analysis for stress wave propagation in transversely isotropic fluid-saturated porous media was performed. The characteristic differential equations and compatibility relations along bicharacteristics were deduced and the analytical expressions for wave surfaces were obtained. The characteristic and shapes of the velocity surfaces and wave surfaces in the transversely isotropic fluid-saturated porous media were discussed in detail. The results also show that the characteristic equations for stress waves in pure solids are particular cases of the characteristic equations for fluid-saturated porous media.  相似文献   

7.
Summary Theoretical and numerical aspects of the formulation of electromechanically coupled, transversely isotropic solids are discussed within the framework of the invariant theory. The main goal is the representation of the governing constitutive equations for reversible material behaviour based on an anisotropic electromechanical enthalpy function, which automatically fulfills the requirements of material symmetry. The introduction of a preferred direction in the argument list of the enthalpy function allows the construction of isotropic tensor functions, which reflect the inherent geometrical and physical symmetries of the polarized medium. After presenting the general framework, we consider two important model problems within this setting: i) the linear piezoelectric solid; and ii) the nonlinear electrostriction. A parameter identification of the invariant- and the common coordinate-dependent formulation is performed for both cases. The tensor generators for the stresses, electric displacements and the moduli are derived in detail, and some representative numerical examples are presented.We thank Dipl.-Ing. H. Romanowski for his support and helpful remarks.  相似文献   

8.
IntroductionWiththedevelopmentofinformationindustryandtheapearanceofsmartmaterialsandsmartstructures,itbecomesmoreandmoreimpo...  相似文献   

9.
王敏中 《力学进展》2006,36(4):626-627
浙江大学土木系丁皓江教授和陈伟球教授及澳大利亚悉尼大学航空、机械与机电工程学院章亮炽教授的专著“Elasticity of Transversely Isotropic Ma- terials”(ISBN:1-4020-4033-4),2006年由Springer公司出版,该书是加拿大著名力学家G.M.L.Gladwell  相似文献   

10.
Closed-form expressions are obtained for the infinite-body Green's functions for a transversely isotropic piezoelectric medium. The four Green's functions represent the coupled elastic and electric response to an applied point force or point charge. The Green's functions are obtained using a formulation where the three displacements and the electric potential are derivable from two potential functions. When piezoelectric coupling is absent, the results reduce to those for uncoupled elasticity and electrostatics.  相似文献   

11.
Summary Piezoelectric material containing an inhomogeneity with different electroelastic properties is considered. The coupled electroelastic fields within the inclusion satisfy a system of integral equations solved in a closed form in the case of an ellipsoidal inclusion. The solution is utilized to find the concentration of the electroelastic fields around an inhomogeneity, and to derive the expression for the electric enthalpy of the electroelastic medium with an ellipsoidal inclusion that is relevant for various applications. Explicit closed-form expressions are found for the electroelastic fields within a spheroidal inclusion embedded in the transversely isotropic matrix. Results are specialized for a cylinder, a flat rigid disk and a crack. For a penny-shaped crack, the quantities entering the crack propagation criterion are found explicitly. Received 17 February 2000; accepted for publication 9 May 2000  相似文献   

12.
The wave propagation in an infinite, transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid is studied using the Fourier expansion collocation method, within the framework of the linearized, three-dimensional theory of elasticity. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely isotropic cylinder and the constitutive equation of an inviscid fluid. Three displacement potential functions are introduced to uncouple the equations of motion along the radial, circumferential and axial directions. The frequency equations of longitudinal and flexural (symmetric and antisymmetric) modes are analyzed numerically for an elliptic and cardioidal cross-sectional transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid. The computed non-dimensional wavenumbers are presented in the form of dispersion curves for the material zinc. The general theory can be used to study any kind of cylinder with proper geometric relations.  相似文献   

13.
The analytical solutions for body-wave velocity in a continuously inhomogeneous transversely isotropic material, in which Young’s moduli (E, E′), shear modulus (G′), and material density (ρ) change according to the generalized power law model, (a+b z) c , are set down. The remaining elastic constants of transversely isotropic media, ν, and ν′ are assumed to be constants throughout the depth. The planes of transversely isotropy are selected to be parallel to the horizontal surface. The generalized Hooke’s law, strain-displacement relationships, and equilibrium equations are integrated to constitute the governing equations. In these equations, utilizing the displacement components as fundamental variables, the solutions of three quasi-wave velocities (V SV , V P ,?V SH ) are generated for the present inhomogeneous transversely isotropic materials. The proposed solutions are compared with those of Daley and Hron (Bull Seismol Soc Am 67:661–675, (1977)), and Levin (Geophysics 44:918–936, (1979)) when the inhomogeneity parameter c?=?0. The agreement between the present results and previously published ones is excellent. In addition, the parametric study results reveal that the magnitudes of wave velocity are remarkably affected by (1) the inhomogeneity parameters (a, b, c); (2) the type and degree of material anisotropy (E/E′, ν/ν′, G/G′); (3) the phase angle (θ); and (4) the depth of the medium (z). Consequently, it is imperative to consider the effects of inhomogeneity when investigating wave propagation in transversely isotropic media.  相似文献   

14.
A study concerning the propagation of free non-axisymmetric waves in a homogeneous piezoelectric cylinder of transversely isotropic material with axial polarization is carried out on the basis of the linear theory of elasticity and linear electro-mechanical coupling. The solution of the three dimensional equations of motion and quasi-electrostatic equation is given in terms of seven mechanical and three electric potentials. The characteristic equations are obtained by the application of the mechanical and two types of electric boundary conditions at the surface of the piezoelectric cylinder. A novel method of displaying dispersion curves is described in the paper and the resulting dispersion curves are presented for propagating and evanescent waves for PZT-4 and PZT-7A piezoelectric ceramics for circumferential wave numbers m = 1, 2, and 3. It is observed that the dispersion curves are sensitive to the type of the imposed boundary conditions as well as to the measure of the electro-mechanical coupling of the material.  相似文献   

15.
A new and simple method is presented to determine the inde-pendent shear modulus of transversely isotropic material.Mathematical formulation,derivation and solution are given,and test apparatus and results are presented.The method wastested on one of such materials-Green River Formation oilshale.Comparisons wich other approximate results and acou-stical methods are made.Confirmation of the test methodwith materials having known shear moduli is also presented.  相似文献   

16.
In this paper, we develop a model to treat penny-shaped crack configuration in a piezoelectric layer of finite thickness. The piezoelectric layer is subjected to axially symmetric mechanical and electrical loads. Hankel transform technique is used to reduce the problem to the solution of a system of integral equations. A numerical solution for the crack tip fields is obtained for different crack radius and crack position.  相似文献   

17.
Based on three-dimensional elastic theory of piezoelectric materials, the axisymmetric state space formulation of piezoelectric laminated circular plates is derived. Finite Hankel transforms are used and the boundary variables in free terms are replaced, for two kinds of boundary conditions, to obtain ordinary differential equations with constant coefficients. Regarding the axisymmetric free vibration problem, two exact solutions for two different boundary conditions are found. Discarding piezoelectric effect, the exact solutions for transversely isotropic circular laminates are also obtained through the same procedure. Numerical examples are given and compared with those of Finite Element Method (FEM) .  相似文献   

18.
An experimental investigation was conducted to determine wave-propagation characteristics, transient-strain distributions and residual properties for unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicon-rubber projectiles at velocities up to 250 ms?1 (820 ft/s). Tests were conducted at normal and 45-deg oblique impact. Strain signals obtained from surface and embedded strain gages were recorded and analyzed to determine the types of waves, propagation velocities, peak strains, strain rates and attenuation characteristics. The predominant wave is a flexural on propagating at different velocities in different directions. The flexural wave velocity is higher in the higher-modulus direction. In general, measured wave velocities were higher than theoretically predicted. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. Strain rates up to 640 s?1 were measured. Under oblique 45-deg impact, the flexural wave is still the predominant one. Peak strains under this oblique impact range between 36 and 56 percent of those under normal impact of the same velocity. Residual elastic properties and strength were measured around the point of impact. The most significant result was a reduction in the transverse strength of the unidirectional laminates. The dynamics of impact were also studied with high-speed photography. The projectile is completely flattened within 50–70 μs and the total contact time is of the order of 300 μs.  相似文献   

19.
By invoking the theorem of work reciprocity for piezoelectric media, necessary conditions, which the prescribed edge data of the plate must fulfill in order that it should generate a decaying state within the plate, are established through generalizing the method proposed by Gregory and Wan. These decaying state conditions for the case of axisymmetric deformation of a transversely isotropic piezoelectric circular plate when stress and electric displacement conditions are imposed on the plate edge are derived explicitly, which are then used for the formulation of boundary conditions for the plate theory solution (or the interior solution). Also an analytical solution of the axisymmetric decaying state of transversely isotropic piezoelectric circular plates is derived. Furthermore, the corresponding necessary conditions for the axisymmetric deformation of elastic circular plates are indeed reproduced directly.  相似文献   

20.
Summary In this paper, the method of numerical integration along bicharacteristics is generalized to the case of layered transversely isotropic medium for analysing the axisymmetric stress wave propagation. The stability of the present scheme is studied. The advantages and limitations of the method are discussed. Received 12 June 1996; accepted for publication 6 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号