首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对相对论Vlasov方程动量区间跨度大、难以计算的困难,将相对论Vlasov方程在球坐标动量空间中进行数值求解.对相对论Vlasov方程球坐标动量空间构造4阶非分裂守恒型数值格式.数值模拟相对论Landau阻尼问题并与解析理论进行比较,验证数值模型和算法的有效性.对激光等离子体相互作用进行初步模拟分析,表明通过采用球坐标下的动量空间,可在相对较少动量网格情形下,获得与粒子模拟可相互验证的结果.  相似文献   

2.
A numerical method is developed for solving the Vlasov–Maxwell–Fokker–Planck system in two spatial dimensions. This system of equations is a model for a collisional plasma in the presence of a self consistent electromagnetic field. The numerical procedure is a type of deterministic particle method and is an extension to include the full electromagnetic field of the approximation method of Wollman and Ozizmir [S. Wollman, E. Ozizmir, Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in two dimensions, J. Comput. Phys. 228 (2009) 6629–6669]. In addition, the long time asymptotic behavior of solutions is studied. It is determined that the solution to the Vlasov–Maxwell–Fokker–Planck system converges to the same steady state solution as that for the Vlasov–Poisson–Fokker–Planck system.  相似文献   

3.
The Vlasov Poisson system is a partial differential equation widely used to describe collisionless plasma. It is formulated in a six-dimensional phase space, this prohibits a numerical solution on a complete phase space grid. In some applications, however, spherical symmetry is given, which introduces singularities into the Vlasov Poisson equation. We focus on such problems and propose a stable algorithm using accommodating boundaries. At first, the method is tested in the linear regime, where analytical solutions are available. Thereafter it is applied to large disturbances from equilibrium.  相似文献   

4.
In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially non-oscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear hyperbolic equations, can be factored into right and left flux matrices. It is the factoring of the interpolation matrices which makes it possible to apply the WENO methodology in the reconstruction used in the semi-Lagrangian update. The spatial WENO reconstruction developed for this method is conservative and updates point values of the solution. While the third, fifth, seventh and ninth order reconstructions are presented in this paper, the scheme can be extended to arbitrarily high order. WENO reconstruction is able to achieve high order accuracy in smooth parts of the solution while being able to capture sharp interfaces without introducing oscillations. Moreover, the CFL time step restriction of a regular finite difference or finite volume WENO scheme is removed in a semi-Lagrangian framework, allowing for a cheaper and more flexible numerical realization. The quality of the proposed method is demonstrated by applying the approach to basic test problems, such as linear advection and rigid body rotation, and to classical plasma problems, such as Landau damping and the two-stream instability. Even though the method is only second order accurate in time, our numerical results suggest the use of high order reconstruction is advantageous when considering the Vlasov–Poisson system.  相似文献   

5.
6.
We here discuss the emergence of quasistationary states (QSS), a universal feature of systems with long-range interactions. With reference to the Hamiltonian mean-field model, numerical simulations are performed based on both the original N-body setting and the continuum Vlasov model which is supposed to hold in the thermodynamic limit. A detailed comparison unambiguously demonstrates that the Vlasov-wave system provides the correct framework to address the study of QSS. Further, analytical calculations based on Lynden-Bell's theory of violent relaxation are shown to result in accurate predictions. Finally, in specific regions of parameters space, Vlasov numerical solutions are shown to be affected by small scale fluctuations, a finding that points to the need for novel schemes able to account for particle correlations.  相似文献   

7.
Klaus Morawetz  Rainer Walke 《Physica A》2003,330(3-4):469-495
The Vlasov equation is analyzed for coarse-grained distributions resembling a finite width of test particles as used in numerical implementations. It is shown that this coarse-grained distribution obeys a kinetic equation similar to the Vlasov equation, but with additional terms. These terms give rise to entropy production indicating dissipative features due to a nonlinear mode coupling. The interchange of coarse graining and dynamical evolution is discussed with the help of an exactly solvable model for the self-consistent Vlasov equation and practical consequences are worked out. By calculating analytically the stationary solution of a general Vlasov equation we can show that a sum of modified Boltzmann-like distributions is approached dependent on the initial distribution. This behavior is independent of degeneracy and only controlled by the width of test particles. The condition for approaching a stationary solution is derived and it is found that the coarse graining energy given by the momentum width of test particles should be smaller than a quarter of the kinetic energy. Observable consequences of this coarse graining are: (i) spatial correlations in observables, (ii) too large radii of clusters or nuclei in self-consistent Thomas–Fermi treatments, (iii) a structure term in the response function resembling vertex correction correlations or internal structure effects and (iv) a modified centroid energy and higher damping width of collective modes.  相似文献   

8.
Semi-Lagrangian (SL) methods have been very popular in the Vlasov simulation community , , , , , ,  and . In this paper, we propose a new Strang split SL discontinuous Galerkin (DG) method for solving the Vlasov equation. Specifically, we apply the Strang splitting for the Vlasov equation [6], as a way to decouple the nonlinear Vlasov system into a sequence of 1-D advection equations, each of which has an advection velocity that only depends on coordinates that are transverse to the direction of propagation. To evolve the decoupled linear equations, we propose to couple the SL framework with the semi-discrete DG formulation. The proposed SL DG method is free of time step restriction compared with the Runge–Kutta DG method, which is known to suffer from numerical time step limitation with relatively small CFL numbers according to linear stability analysis. We apply the recently developed positivity preserving (PP) limiter [37], which is a low-cost black box procedure, to our scheme to ensure the positivity of the unknown probability density function without affecting the high order accuracy of the base SL DG scheme. We analyze the stability and accuracy properties of the SL DG scheme by establishing its connection with the direct and weak formulations of the characteristics/Lagrangian Galerkin method [23]. The quality of the proposed method is demonstrated via basic test problems, such as linear advection and rigid body rotation, and via classical plasma problems, such as Landau damping and the two stream instability.  相似文献   

9.
《Nuclear Physics A》1986,456(2):205-234
A semiclassical theory of giant resonances based on the Vlasov equation is developed. The linearized Vlasov equation is solved for the bound motion of particles in a central potential with an external time-dependent multipole field. The solution obeys an RPA-type integral equation. If the time-dependent part of the self-consistent field is neglected, the solution of the Vlasov equation has a simple analytical form. The strength function for each multipole can be expressed in terms of the natural frequencies of classical orbits and of radial integrals over the classical motion. The method is illustrated by studying the isoscalar monopole, quadrupole and octupole response in medium-heavy nuclei without residual interaction. There are remarkable similarities between the solutions of the semiclassical problem and the corresponding quantum problem. For a central potential with Saxon-Woods shape there is an interesting shift and concentration of strength in the quadrupole and octupole response functions.  相似文献   

10.
We explore from a numerical point of view the validity of the Vlasov equation as a semi-classical approximation of time-dependent Hartree-Fock and time-dependent LDA theories, in terms of the survival of the Pauli principle. The fermionic properties are investigated by using a Na9+ cluster as test case and solving the Vlasov equation with the test particle method. This allows to derive a time span for which the Vlasov equation provides an acceptable approximation.  相似文献   

11.
The interaction of intense lasers with solid matter generates a hot plasma state that is well described by the Vlasov–Fokker–Planck equation. Accurate and efficient modeling of the physics in these scenarios is highly pertinent, because it relates to experimental campaigns to produce energy by inertial confinement fusion on facilities such as the National Ignition Facility. Calculations involving the Vlasov–Fokker–Planck equation are computationally intensive, but are crucial to proper understanding of a wide variety of physical effects and instabilities in inertial fusion plasmas. In this topical review, we will introduce the background physics related to Vlasov–Fokker–Planck simulation, and then proceed to describe results from numerical simulation of inertial fusion plasma in a pedagogical manner by discussing some key numerical algorithm developments that enabled the research to take place. A qualitative comparison of the techniques is also given.  相似文献   

12.
The phase-space evolution in a non-relativistic and homogeneous laser plasma in the presence of the stimulated Raman scattering is studied. Transform method is used for a solution of the set of partial differential equations which consists of the Vlasov equation and of the full set of Maxwell equations in a 1D model. Numerical instability of the Fourier-Hermite representation is described and discussed. To overcome numerical instabilities during the simulation, a simplified Fokker-Planck collision term is employed. In the collisionless case the solution is pushed to the practicable limit and the initial phase of particle trapping and acceleration in the potential wells of the electrostatic wave accompanying the Raman backscattered wave was recorded. Also the growth of the electrostatic partner of the Raman forward scattered wave was observed.  相似文献   

13.
In omnigenous systems, guiding centers are constrained to move on magnetic surfaces. Since a magnetic surface is determined by a constant radial Clebsch coordinate, omnigeneity implies that the guiding center radial coordinate (the Clebsch coordinate) is a constant of motion. Near omnigeneity is probably a requirement for high quality confinement and in such systems only small oscillatory radial banana guiding center excursions from the average drift surface occur. The guiding center radial coordinate is then the leading term for a more precise radial drift invariant I r , corrected by oscillatory “banana ripple” terms. An analytical expression for the radial invariant is derived for long-thin quadrupolar mirror equilibria. The formula for the invariant is then used in a Vlasov distribution function. Comparisons are first made with Vlasov equilibria using the adiabatic parallel invariant. To model radial density profiles, it is necessary to use the radial invariant (the parallel invariant is insufficient for this). The results are also compared with a fluid approach. In several aspects, the fluid and Vlasov system with the radial invariant give analogous predictions. One difference is that the parallel current associated with finite banana widths could be derived from the radial invariant.  相似文献   

14.
闫青  贾维国  于宇  张俊萍  门克内木乐 《物理学报》2015,64(18):184211-184211
从高双折射光纤中含有拉曼增益的耦合非线性薛定谔方程出发, 利用拉格朗日方法, 推导出了暗孤子俘获的阈值, 并利用快速分步傅里叶变换, 模拟了孤子的两个正交偏振分量的演化, 对比了两种方法得到的阈值, 探究了暗孤子俘获受拉曼增益的影响. 研究发现解析解所得阈值比数值解偏小, 且群速度失配越小时, 二者符合得越好; 并且拉曼增益减小了暗孤子的俘获阈值, 当平行拉曼增益增大时, 俘获阈值减小加快.  相似文献   

15.
Conservative methods for the numerical solution of the Vlasov equation are developed in the context of the one-dimensional splitting. In the case of constant advection, these methods and the traditional semi-Lagrangian ones are proven to be equivalent, but the conservative methods offer the possibility to add adequate filters in order to ensure the positivity. In the non-constant advection case, they present an alternative to the traditional semi-Lagrangian schemes which can suffer from bad mass conservation, in this time splitting setting.  相似文献   

16.
This paper deals with the numerical resolution of the Vlasov–Poisson system in a nearly quasineutral regime by Particle-In-Cell (PIC) methods. In this regime, Classical PIC methods are subject to stability constraints on the time and space steps related to the small Debye length and large plasma frequency. Here, we propose an “Asymptotic-Preserving” PIC scheme which is not subjected to these limitations. Additionally, when the plasma period and Debye length are small compared to the time and space steps, this method provides a consistent PIC discretization of the quasineutral Vlasov equation. We perform several one-dimensional numerical experiments which provide a solid validation of the method and its underlying concepts, and compare the method with Classical PIC and Direct-Implicit methods.  相似文献   

17.
从弗拉索夫方程出发,导出了托卡马克等离子体中漂移不稳定性的回旋动理学二维本征模积分方程组。该方程组保留了离子的动理学效应,包括沿磁场的运动、磁场梯度和曲率漂移以及有限拉莫半径效应。与传统的采用气球模表象得到的一维回旋动理学方程(其只能给出不稳定模沿磁场线的结构)不同,该方程组不仅能给出托卡马克等离子体中漂移不稳定模的径向结构,同时还考虑了由离子的环形性漂移引起的相邻极向模之间的线性耦合,进而得到模的极向结构。该结果为相应的数值模拟研究提供了理论基础。  相似文献   

18.
We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, φ(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, φ(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.  相似文献   

19.
蒋涛  陈振超  任金莲  李刚 《物理学报》2017,66(13):130201-130201
为了解决传统光滑粒子动力学(SPH)方法求解三维变系数瞬态热传导方程时出现的精度低、稳定性差和计算效率低的问题,本文首先基于Taylor展开思想拓展一阶对称SPH方法到三维热传导问题的模拟,其次引入稳定化处理的迎风思想,最后基于相邻粒子标记和MPI并行技术,结合边界处理方法得到一种能够准确、高效地求解三维变系数瞬态热传导问题的修正并行SPH方法.通过对带有Direclet和Newmann边界条件的常/变系数三维热传导方程进行模拟,并与解析解进行对比,对提出的方法的精度、收敛性及计算效率进行了分析;随后,运用提出的修正并行SPH方法对三维功能梯度材料中温度变化进行了模拟预测,并与其他数值结果做对比,准确地展现了功能梯度材料中温度变化过程.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号