首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss–Lobatto–Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge–Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for Re = 400–5000 and flows around an impulsively started cylinder for Re = 550–9500. Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.  相似文献   

2.
In this work we show that the flexibility of the discontinuous Galerkin (dG) discretization can be fruitfully exploited to implement numerical solution strategies based on the use of elements with very general shapes. Thanks to the freedom in defining the mesh topology, we propose a new h-adaptive technique based on agglomeration coarsening of a fine mesh. The possibility to enhance the error distribution over the computational domain is investigated on a Poisson problem with the goal of obtaining a mesh independent discretization.The main building block of our dG method consists of defining discrete polynomial spaces directly on physical frame elements. For this purpose we orthonormalize with respect to the L2-product a set of monomials relocated in a specific element frame and we introduce an easy way to reduce the cost related to numerical integration on agglomerated meshes. To complete the dG formulation for second order problems, two extensions of the BR2 scheme to arbitrary polyhedral grids, including an estimate of the stabilization parameter ensuring the coercivity property, are here proposed.  相似文献   

3.
We study the performance of methods of lines combining discontinuous Galerkin spatial discretizations and explicit Runge–Kutta time integrators, with the aim of deriving optimal Runge–Kutta schemes for wave propagation applications. We review relevant Runge–Kutta methods from literature, and consider schemes of order q from 3 to 4, and number of stages up to q + 4, for optimization. From a user point of view, the problem of the computational efficiency involves the choice of the best combination of mesh and numerical method; two scenarios are defined. In the first one, the element size is totally free, and a 8-stage, fourth-order Runge–Kutta scheme is found to minimize a cost measure depending on both accuracy and stability. In the second one, the elements are assumed to be constrained to such a small size by geometrical features of the computational domain, that accuracy is disregarded. We then derive one 7-stage, third-order scheme and one 8-stage, fourth-order scheme that maximize the stability limit. The performance of the three new schemes is thoroughly analyzed, and the benefits are illustrated with two examples. For each of these Runge–Kutta methods, we provide the coefficients for a 2N-storage implementation, along with the information needed by the user to employ them optimally.  相似文献   

4.
With many superior features, Runge–Kutta discontinuous Galerkin method (RKDG), which adopts Discontinuous Galerkin method (DG) for space discretization and Runge–Kutta method (RK) for time integration, has been an attractive alternative to the finite difference based high-order Computational Aeroacoustics (CAA) approaches. However, when it comes to complex physical problems, especially the ones involving irregular geometries, the time step size of an explicit RK scheme is limited by the smallest grid size in the computational domain, demanding a high computational cost for obtaining time accurate numerical solutions in CAA. For computational efficiency, high-order RK method with nonuniform time step sizes on nonuniform meshes is developed in this paper. In order to ensure correct communication of solutions on the interfaces of grids with different time step sizes, the values at intermediate-stages of the Runge–Kutta time integration on the elements neighboring such interfaces are coupled with minimal dissipation and dispersion errors. Based upon the general form of an explicit p-stage RK scheme, a linear coupling procedure is proposed, with details on the coefficient matrices and execution steps at common time-levels and intermediate time-levels. Applications of the coupling procedures to Runge–Kutta schemes frequently used in simulation of fluid flow and acoustics are given, including the third-order TVD scheme, and low-storage low dissipation and low dispersion (LDDRK) schemes. In addition, an analysis on the stability of coupling procedures on a nonuniform grid is carried out. For validation, numerical experiments on one-dimensional and two-dimensional problems are presented to illustrate the stability and accuracy of proposed nonuniform time-step RKDG scheme, as well as the computational benefits it brings. Application to a one-dimensional nonlinear problem is also investigated.  相似文献   

5.
A discontinuous Galerkin Method based on a Bhatnagar-Gross-Krook (BGK) formulation is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The idea behind this approach is to combine the robustness of the BGK scheme with the accuracy of the DG methods in an effort to develop a more accurate, efficient, and robust method for numerical simulations of viscous flows in a wide range of flow regimes. Unlike the traditional discontinuous Galerkin methods, where a Local Discontinuous Galerkin (LDG) formulation is usually used to discretize the viscous fluxes in the Navier-Stokes equations, this DG method uses a BGK scheme to compute the fluxes which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at a cell interface through a simple hybrid gas distribution function. The developed method is used to compute a variety of viscous flow problems on arbitrary grids. The numerical results obtained by this BGKDG method are extremely promising and encouraging in terms of both accuracy and robustness, indicating its ability and potential to become not just a competitive but simply a superior approach than the current available numerical methods.  相似文献   

6.
In this work we present a pressure-correction scheme for the incompressible Navier–Stokes equations combining a discontinuous Galerkin approximation for the velocity and a standard continuous Galerkin approximation for the pressure. The main interest of pressure-correction algorithms is the reduced computational cost compared to monolithic strategies. In this work we show how a proper discretization of the decoupled momentum equation can render this method suitable to simulate high Reynolds regimes. The proposed spatial velocity–pressure approximation is LBB stable for equal polynomial orders and it allows adaptive p-refinement for velocity and global p-refinement for pressure. The method is validated against a large set of classical two- and three-dimensional test cases covering a wide range of Reynolds numbers, in which it proves effective both in terms of accuracy and computational cost.  相似文献   

7.
We present the first space–time hybridizable discontinuous Galerkin (HDG) finite element method for the incompressible Navier–Stokes and Oseen equations. Major advantages of a space–time formulation are its excellent capabilities of dealing with moving and deforming domains and grids and its ability to achieve higher-order accurate approximations in both time and space by simply increasing the order of polynomial approximation in the space–time elements. Our formulation is related to the HDG formulation for incompressible flows introduced recently in, e.g., [N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng. 199 (2010) 582–597]. However, ours is inspired in typical DG formulations for compressible flows which allow for a more straightforward implementation. Another difference is the use of polynomials of fixed total degree with space–time hexahedral and quadrilateral elements, instead of simplicial elements. We present numerical experiments in order to assess the quality of the performance of the methods on deforming domains and to experimentally investigate the behavior of the convergence rates of each component of the solution with respect to the polynomial degree of the approximations in both space and time.  相似文献   

8.
We describe a mixed Eulerian–Lagrangian approach for solving fluid–structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite overlapping grids. Curvilinear grids are aligned with each interface and these grids deform as the interface evolves. The majority of grid points in the fluid domain generally belong to background Cartesian grids which do not move during a simulation. The FSI-DCG approach allows large displacements of the interfaces while retaining high quality grids. Efficiency is obtained through the use of structured grids and Cartesian grids. The governing equations in the fluid and solid domains are evolved in a partitioned approach. We solve the compressible Euler equations in the fluid domains using a high-order Godunov finite-volume scheme. We solve the linear elastodynamic equations in the solid domains using a second-order upwind scheme. We develop interface approximations based on the solution of a fluid–solid Riemann problem that results in a stable scheme even for the difficult case of light solids coupled to heavy fluids. The FSI-DCG approach is verified for three problems with known solutions, an elastic-piston problem, the superseismic shock problem and a deforming diffuser. In addition, a self convergence study is performed for an elastic shock hitting a fluid filled cavity. The overall FSI-DCG scheme is shown to be second-order accurate in the max-norm for smooth solutions, and robust and stable for problems with discontinuous solutions for a wide range of constitutive parameters.  相似文献   

9.
Recently a new high-order formulation for 1D conservation laws was developed by Huynh using the idea of “flux reconstruction”. The formulation was capable of unifying several popular methods including the discontinuous Galerkin, staggered-grid multi-domain method, or the spectral difference/spectral volume methods into a single family. The extension of the method to quadrilateral and hexahedral elements is straightforward. In an attempt to extend the method to other element types such as triangular, tetrahedral or prismatic elements, the idea of “flux reconstruction” is generalized into a “lifting collocation penalty” approach. With a judicious selection of solution points and flux points, the approach can be made simple and efficient to implement for mixed grids. In addition, the formulation includes the discontinuous Galerkin, spectral volume and spectral difference methods as special cases. Several test problems are presented to demonstrate the capability of the method.  相似文献   

10.
We study time step restrictions due to linear stability constraints of Runge–Kutta Discontinuous Galerkin methods on triangular grids. The scalar advection equation is discretized in space by the Discontinuous Galerkin method with either the Lax–Friedrichs flux or the upwind flux, and integrated in time with various Runge–Kutta schemes designed for linear wave propagation problems or non-linear applications. Von–Neumann-like analyses are performed on structured periodic grids made up of congruent elements, to investigate the influence of element shape on the stability restrictions. We assess CFL conditions based on different element size measures, among which only the radius of the inscribed circle and the shortest height prove appropriate, although they are not totally independent of the triangle shape. We explain their general behaviour with respect to element quality, and report the corresponding Courant numbers with both types of flux and polynomial order p ranging from 1 to 10, for use as guidelines in practical simulations. We also compare the performance of the Lax–Friedrichs flux and the upwind flux, and we draw general conclusions about the relative computational efficiency of RK schemes. The application of CFL conditions to two examples involving respectively an unstructured and a hybrid grid confirms our results, although it shows that local stability criteria tend to yield too restrictive conditions.  相似文献   

11.
This paper is devoted to time domain numerical solutions of two-dimensional (2D) material interface problems governed by the transverse magnetic (TM) and transverse electric (TE) Maxwell's equations with discontinuous electromagnetic solutions. Due to the discontinuity in wave solutions across the interface, the usual numerical methods will converge slowly or even fail to converge. This calls for the development of advanced interface treatments for popular Maxwell solvers. We will investigate such interface treatments by considering two typical Maxwell solvers – one based on collocation formulation and the other based on Galerkin formulation. To restore the accuracy reduction of the collocation finite-difference time-domain (FDTD) algorithm near an interface, the physical jump conditions relating discontinuous wave solutions on both sides of the interface must be rigorously enforced. For this purpose, a novel matched interface and boundary (MIB) scheme is proposed in this work, in which new jump conditions are derived so that the discontinuous and staggered features of electric and magnetic field components can be accommodated. The resulting MIB time-domain (MIBTD) scheme satisfies the jump conditions locally and suppresses the staircase approximation errors completely over the Yee lattices. In the discontinuous Galerkin time-domain (DGTD) algorithm – a popular Galerkin Maxwell solver, a proper numerical flux can be designed to accurately capture the jumps in the electromagnetic waves across the interface and automatically preserves the discontinuity in the explicit time integration. The DGTD solution to Maxwell interface problems is explored in this work, by considering a nodal based high order discontinuous Galerkin method. In benchmark TM and TE tests with analytical solutions, both MIBTD and DGTD schemes achieve the second order of accuracy in solving circular interfaces. In comparison, the numerical convergence of the MIBTD method is slightly more uniform, while the DGTD method is more flexible and robust.  相似文献   

12.
In this paper we propose a new local discontinuous Galerkin method to directly solve Hamilton–Jacobi equations. The scheme is a natural extension of the monotone scheme. For the linear case with constant coefficients, the method is equivalent to the discontinuous Galerkin method for conservation laws. Thus, stability and error analysis are obtained under the framework of conservation laws. For both convex and noneconvex Hamiltonian, optimal (k + 1)th order of accuracy for smooth solutions are obtained with piecewise kth order polynomial approximations. The scheme is numerically tested on a variety of one and two dimensional problems. The method works well to capture sharp corners (discontinuous derivatives) and have the solution converges to the viscosity solution.  相似文献   

13.
构造矩形网格下求解Lagrangian坐标系下气动方程组的单元中心型格式. 空间离散采用控制体积间断Petrov-Galerkin方法,时间离散采用二阶TVD Runge-Kutta方法. 利用限制器来抑制非物理震荡并保证RKCV算法的稳定性. 构造的算法可以保证物理量的局部守恒. 与Runge-Kutta间断Galerkin(RKDG)方法相比较,RKCV方法的计算公式少一项积分项使得计算较简单. 给出一些数值算例验证了算法的可靠性及效率.  相似文献   

14.
Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work [F. Li, L. Xu, S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, Journal of Computational Physics 230 (2011) 4828–4847], second and third order exactly divergence-free central discontinuous Galerkin methods were proposed for ideal MHD equations. In this paper, we further develop such methods with higher order accuracy. The novelty here is that the well-established H(div)-conforming finite element spaces are used in the constrained transport type framework, and the magnetic induction equations are extensively explored in order to extract sufficient information to uniquely reconstruct an exactly divergence-free magnetic field. The overall algorithm is local, and it can be of arbitrary order of accuracy. Numerical examples are presented to demonstrate the performance of the proposed methods especially when they are fourth order accurate.  相似文献   

15.
In this paper, we consider a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Korteweg-de Vries (KdV) equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditionally stable and convergent through analysis. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

16.
A key idea in finite difference weighted essentially non-oscillatory (WENO) schemes is a combination of lower order fluxes to obtain a higher order approximation. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the success of WENO schemes. For the system case, WENO schemes are based on local characteristic decompositions and flux splitting to avoid spurious oscillation. But the cost of computation of nonlinear weights and local characteristic decompositions is very high. In this paper, we investigate hybrid schemes of WENO schemes with high order up-wind linear schemes using different discontinuity indicators and explore the possibility in avoiding the local characteristic decompositions and the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong shocks. The idea is to identify discontinuity by an discontinuity indicator, then reconstruct numerical flux by WENO approximation in discontinuous regions and up-wind linear approximation in smooth regions. These indicators are mainly based on the troubled-cell indicators for discontinuous Galerkin (DG) method which are listed in the paper by Qiu and Shu (J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin methods using weighted essentially non-oscillatory limiters, SIAM Journal of Scientific Computing 27 (2005) 995–1013). The emphasis of the paper is on comparison of the performance of hybrid scheme using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance of hybrid scheme to save computational cost. Detail numerical studies in one- and two-dimensional cases are performed, addressing the issues of efficiency (less CPU time and more accurate numerical solution), non-oscillatory property.  相似文献   

17.
In this paper, we systematically investigate adaptive Runge–Kutta discontinuous Galerkin (RKDG) methods for hyperbolic conservation laws with different indicators which were based on the troubled cell indicators studied by Qiu and Shu [J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin mehtods using weighted essentially non-osillatory limiters, SIAM J. Sci. Comput. 27 (2005) 995–1013]. The emphasis is on comparison of the performance of adaptive RKDG method using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance for adaptive computation to save computational cost. Both h-version and r-version adaptive methods are considered in the paper. The idea is to first identify “troubled cells” by different troubled-cell indicators, namely those cells where limiting might be needed and discontinuities might appear, then adopt an adaptive approach in these cells. A detailed numerical study in one-dimensional case is performed, addressing the issues of efficiency (less CPU cost and more accurate), non-oscillatory property, and resolution of discontinuities.  相似文献   

18.
We present a generalization of the finite volume evolution Galerkin scheme [M. Luká?ová-Medvid’ová, J. Saibertov’a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533– 562; M. Luká?ová-Medvid’ová, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1–30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor–corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.  相似文献   

19.
In this study a discontinuous Galerkin method (DG) for solving the three-dimensional time-dependent dissipative wave equation is investigated. In the case of unbounded problems, the perfectly matching layer (PML) is used to truncate the computational domain. The aim of this work is to investigate a simple selection method for choosing the basis order for elements in the computational mesh in order to obtain a predetermined error level. The selection method studied here relies on the error estimates provided by Ainsworth [M. Ainsworth, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, Journal of Computational Physics 198(1) (2004) 106–130]. The performance of the non-uniform basis is examined using numerical experiments. In the simulated model problems, a feasible method choosing the basis order for arbitrary sized elements is achieved. In simulations, the effect of dissipation and the choices of the PML parameters on the performance of the DG method are also investigated.  相似文献   

20.
This paper presents a comprehensive overview of the element-wise locally conservative Galerkin (LCG) method. The LCG method was developed to find a method that had the advantages of the discontinuous Galerkin methods, without the large computational and memory requirements. The initial application of the method is discussed, to the simple scalar transient convection-diffusion equation, along with its extension to the Navier-Stokes equations utilising the Characteristic Based Split (CBS) scheme. The element-by-element solution approach removes the standard finite element assembly necessity, with an face flux providing continuity between these elemental subdomains. This face flux provides explicit local conservation and can be determined via a simple small post-processing calculation. The LCG method obtains a unique solution from the elemental contributions through the use of simple averaging. It is shown within this paper that the LCG method provides equivalent solutions to the continuous (global) Galerkin method for both steady state and transient solutions. Several numerical examples are provided to demonstrate the abilities of the LCG method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号