首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雷国东  任玉新 《计算物理》2009,26(6):799-805
将基于旋转近似Riemann求解器的二阶精度迎风型有限体积方法推广到非结构网格,采用基于网格中心的有限体积法,梯度的计算采用基于节点的方法引入更多的控制体模板,限制器的构造采用与非结构化网格相适应的形式.在求解Riemann问题时,沿具有一定物理意义的两个迎风方向,即控制体界面两侧速度差矢量方向及与之正交的方向.能够完全消除基于Riemann求解器的通量差分裂格式存在的激波不稳定或"红斑"现象.为减小计算量,采用HLL和Roe FDS混合旋转格式.  相似文献   

2.
Wave propagation in idealized stellar atmospheres is modeled by the equations of ideal MHD, together with the gravity source term. The waves are modeled as small perturbations of isothermal steady states of the system. We consider a formulation of ideal MHD based on the Godunov–Powell form, with an embedded potential magnetic field appearing as a parameter. The equations are discretized by finite volume schemes based on approximate Riemann solvers of the HLL type and upwind discretizations of the Godunov–Powell source terms. Local hydrostatic reconstructions and suitable discretization of the gravity source term lead to a well-balanced scheme, i.e., a scheme which exactly preserves a discrete version of the relevant steady states. Higher order of accuracy is obtained by employing suitable minmod, ENO and WENO reconstructions, based on the equilibrium variables, to construct a well-balanced scheme. The resulting high order well-balanced schemes are validated on a suite of numerical experiments involving complex magnetic fields. The schemes are observed to be robust and resolve the complex physics well.  相似文献   

3.
In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central discontinuous Galerkin methods such as high order accuracy and being free of exact or approximate Riemann solvers. And more importantly, the numerical magnetic field is exactly divergence-free. Such property, desired in reliable simulations of MHD equations, is achieved by first approximating the normal component of the magnetic field through discretizing induction equations on the mesh skeleton, namely, the element interfaces. And then it is followed by an element-by-element divergence-free reconstruction with the matching accuracy. Numerical examples are presented to demonstrate the high order accuracy and the robustness of the schemes.  相似文献   

4.
In simulations of magnetohydrodynamic (MHD) processes the violation of the divergence constraint causes severe stability problems. In this paper we develop and test a new approach to the stabilization of numerical schemes. Our technique can be easily implemented in any existing code since there is no need to modify the solver for the MHD equations. It is based on a modified system in which the divergence constraint is coupled with the conservation laws by introducing a generalized Lagrange multiplier. We suggest a formulation in which the divergence errors are transported to the domain boundaries with the maximal admissible speed and are damped at the same time. This corrected system is hyperbolic and the density, momentum, magnetic induction, and total energy density are still conserved. In comparison to results obtained without correction or with the standard “divergence source terms,” our approach seems to yield more robust schemes with significantly smaller divergence errors.  相似文献   

5.
It is of utmost interest to control the divergence of the magnetic flux in simulations of the ideal magnetohydrodynamic equations since, in general, divergence errors tend to accumulate and render the schemes unstable. This paper presents a higher-order extension of the locally divergence-preserving procedure developed in Torrilhon [M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations, SIAM J. Sci. Comput. 26 (2005) 1166–1191]; a fourth-order accurate local redistribution of the numerical magnetic field fluxes of a finite volume base scheme is introduced. The redistribution ensures that a fourth-order accurate discrete divergence operator is preserved to round off errors when applied to the cell averages of the magnetic flux density. The developed procedure is applicable to generic semi-discrete finite volume schemes and its purpose is to stabilize the schemes using a local procedure that respects the accuracy of the base scheme to a greater extent than the previous second-order achievements. Numerical experiments that demonstrate the properties of the new procedure are also presented.  相似文献   

6.
A 3D parallel adaptive mesh refinement (AMR) scheme is described for solving the partial-differential equations governing ideal magnetohydrodynamic (MHD) flows. This new algorithm adopts a cell-centered upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solvers, and explicit multi-stage time stepping to solve the MHD equations in divergence form, providing a combination of high solution accuracy and computational robustness across a large range in the plasma β (β is the ratio of thermal and magnetic pressures). The data structure naturally lends itself to domain decomposition, thereby enabling efficient and scalable implementations on massively parallel supercomputers. Numerical results for MHD simulations of magnetospheric plasma flows are described to demonstrate the validity and capabilities of the approach for space weather applications  相似文献   

7.
In this article, a mixed finite element method for thermally coupled, stationary incompressible MHD problems with physical parameters dependent on temperature in the Lipschitz domain is considered. Due to the variable coefficients of the MHD model, the nonlinearity of the system is increased. A stationary discrete scheme based on the coefficients dependent temperature is proposed, in which the magnetic equation is approximated by Nédélec edge elements, and the thermal and Navier–Stokes equations are approximated by the mixed finite elements. We rigorously establish the optimal error estimates for velocity, pressure, temperature, magnetic induction and Lagrange multiplier with the hypothesis of a low regularity for the exact solution. Finally, a numerical experiment is provided to illustrate the performance and convergence rates of our numerical scheme.  相似文献   

8.
In this paper we develop numerical fluxes of the centred type for one-step schemes in conservative form for solving general systems of conservation laws in multiple-space dimensions on structured meshes. The proposed method is an extension of the multidimensional FORCE flux developed by Toro et al. (2009) [14]. Here we introduce upwind bias by modifying the shape of the staggered mesh of the original FORCE method. The upwind bias is evaluated using an estimate of the largest eigenvalue, which in any case is needed for selecting a time step. The resulting basic flux is first-order accurate and monotone. For the linear advection equation, the proposed UFORCE method reproduces exactly the upwind Godunov method. Extension to non-linear systems has been done empirically via the two-dimensional inviscid shallow water equations. Second order of accuracy in space and time on structured meshes is obtained in the framework of finite volume methods. The proposed method improves the accuracy of the solution for small Courant numbers and intermediate waves associated with linearly degenerate fields (contact discontinuities, shear waves and material interfaces). It achieves comparable accuracy to that of upwind methods with approximate Riemann solvers, though retaining the simplicity and efficiency of centred methods. The performance of the schemes is assessed on a suite of test problems for the two-dimensional shallow water equations.  相似文献   

9.
习心悦  郭孝城  王赤 《计算物理》2022,39(3):286-296
磁场的存在使得磁流体力学特征波模不同于流体力学, 因此直接由流体力学HLLC黎曼算子导出的HLLC双中间态在交界的间断面会出现不守恒的问题。通常降级采用HLL单磁场中间态代替HLLC双磁场中间态以实现守恒和计算稳定, 代价是切向间断的模拟精度不足。本文对此进行改进, 在模拟切向间断时仍然保留原有的HLLC双磁场中间态, 同时各守恒量仍然能够满足Toro相容条件; 改进型HLLC算子在间断两侧的磁场分量存在差异, 因此能够更精确还原切向间断面。基于数值测试, 包括一维激波管和切向间断的时变模拟, 以及地球磁层三维数值模拟, 将模拟结果进行对比, 结果表明: 相比于已发展的HLLC算子, 改进型HLLC算子对切向间断具有更好的捕捉精度, 能够达到或接近耗时更多的HLLD算子的模拟精度。  相似文献   

10.
胡立军  袁礼 《气体物理》2016,1(6):22-35
文章给出了一种真正多维的HLL Riemann解算器.采用AUSM分裂将通量分解成为对流通量和压力通量, 其中对流通量的计算采用迎风格式, 压力通量的计算采用HLL格式, 且将HLL格式的耗散项中的密度差用压力差代替, 从而使得格式能够分辨接触间断.为了实现数值格式真正多维的特性, 分别计算了网格界面中点和角点上的数值通量, 并且采用Simpson公式加权组合中点和角点上的数值通量得到网格界面的数值通量.为了减少重构角点处状态时的模板宽度, 计算中采用基于SDWLS梯度的线性重构获得2阶空间精度, 而时间离散采用2阶保强稳Runge-Kutta方法.数值实验表明, 相比于传统的一维HLL格式, 文章的真正多维HLL格式具有能够分辨接触间断, 以及更大的时间步长等优点.与其他能够分辨接触间断的格式(例如HLLC格式)不同, 真正多维的HLL格式在计算二维问题时不会出现激波不稳定现象.   相似文献   

11.
陈靓  阎超 《计算物理》1998,15(5):547-552
研究了新型上风格式AUSM+的分辨率、效率等性能,并用它与Roe、vanLeer上风格式数值模拟了前向台阶激波反射流动,通过对激波、膨胀波、接触间断及其间相互干扰的复杂波系的模拟对比,分析探讨了AUSM+格式的低数值耗散、间断高分辨率等特性。  相似文献   

12.
The ideal MHD equations are a central model in astrophysics, and their solution relies upon stable numerical schemes. We present an implementation of a new method, which possesses excellent stability properties. Numerical tests demonstrate that the theoretical stability properties are valid in practice with negligible compromises to accuracy. The result is a highly robust scheme with state-of-the-art efficiency. The scheme’s robustness is due to entropy stability, positivity and properly discretised Powell terms. The implementation takes the form of a modification of the MHD module in the FLASH code, an adaptive mesh refinement code. We compare the new scheme with the standard FLASH implementation for MHD. Results show comparable accuracy to standard FLASH with the Roe solver, but highly improved efficiency and stability, particularly for high Mach number flows and low plasma β. The tests include 1D shock tubes, 2D instabilities and highly supersonic, 3D turbulence. We consider turbulent flows with RMS sonic Mach numbers up to 10, typical of gas flows in the interstellar medium. We investigate both strong initial magnetic fields and magnetic field amplification by the turbulent dynamo from extremely high plasma β. The energy spectra show a reasonable decrease in dissipation with grid refinement, and at a resolution of 5123 grid cells we identify a narrow inertial range with the expected power law scaling. The turbulent dynamo exhibits exponential growth of magnetic pressure, with the growth rate higher from solenoidal forcing than from compressive forcing. Two versions of the new scheme are presented, using relaxation-based 3-wave and 5-wave approximate Riemann solvers, respectively. The 5-wave solver is more accurate in some cases, and its computational cost is close to the 3-wave solver.  相似文献   

13.
A finite volume numerical technique is proposed to solve the compressible ideal MHD equations for steady and unsteady problems based on a quasi-Newton implicit time integration strategy. The solenoidal constraint is handled by a hyperbolic divergence cleaning approach allowing its satisfaction up to machine accuracy. The conservation of the magnetic flux is computed in a consistent way using the numerical flux of the finite volume discretization. For the unsteady problem, the time accuracy is obtained by a Newton subiteration at each physical timestep thereby converging the solenoidal constraint to steady state. We perform extensive numerical experiments to validate and demonstrate the capabilities of the proposed numerical technique.  相似文献   

14.
Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work [F. Li, L. Xu, S. Yakovlev, Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, Journal of Computational Physics 230 (2011) 4828–4847], second and third order exactly divergence-free central discontinuous Galerkin methods were proposed for ideal MHD equations. In this paper, we further develop such methods with higher order accuracy. The novelty here is that the well-established H(div)-conforming finite element spaces are used in the constrained transport type framework, and the magnetic induction equations are extensively explored in order to extract sufficient information to uniquely reconstruct an exactly divergence-free magnetic field. The overall algorithm is local, and it can be of arbitrary order of accuracy. Numerical examples are presented to demonstrate the performance of the proposed methods especially when they are fourth order accurate.  相似文献   

15.
In this paper we deal with the construction of hybrid flux-vector-splitting (FVS) schemes and flux-difference-splitting (FDS) schemes for a two-phase model for one-dimensional flow. The model consists of two mass conservation equations (one for each phase) and a common momentum equation. The complexity of this model, as far as numerical computation is concerned, is related to the fact that the flux cannot be expressed in terms of its conservative variables. This is the motivation for studying numerical schemes which are not based on (approximate) Riemann solvers and/or calculations of Jacobian matrix. This work concerns the extension of an FVS type scheme, a Van Leer type scheme, and an advection upstream splitting method (AUSM) type scheme to the current two-phase model. Our schemes are obtained through natural extensions of corresponding schemes studied by Y. Wada and M.-S. Liou (1997, SIAM J. Sci. Comput.18, 633–657) for Euler equations. We explore the various schemes for flow cases which involve both fast and slow transients. In particular, we demonstrate that the FVS scheme is able to capture fast-propagating acoustic waves in a monotone way, while it introduces an excessive numerical dissipation at volume fraction contact (steady and moving) discontinuities. On the other hand, the AUSM scheme gives accurate resolution of contact discontinuities but produces oscillatory approximations of acoustic waves. This motivates us to propose other hybrid FVS/FDS schemes obtained by removing numerical dissipation at contact discontinuities in the FVS and Van Leer schemes.  相似文献   

16.
The exact Riemann problem solutions of the usual equations of ideal magnetohydrodynamics (MHD) can have negative pressures, if the initial data has ·B0. This creates a problem for numerical solving because in a first-order finite-volume conservative Godunov-type method one cannot avoid jumps in the normal magnetic field component even if the magnetic field was divergenceless in the three-dimensional sense. We show that by allowing magnetic monopoles in MHD equations and properly taking into account the magnetostatic contribution to the Lorentz force, an additional source term appears in Faraday's law only. Using the Harten–Lax–vanLeer (HLL) Riemann solver and discretizing the source term in a specific manner, we obtain a method which is positive and conservative. We show positivity by extensive numerical experimentation. This MHD-HLL method is positive and conservative but rather diffusive; thus we show how to hybridize this method with the Roe method to obtain a much higher accuracy while still retaining positivity. The result is a fully robust positive conservative scheme for ideal MHD, whose accuracy and efficiency properties are similar to the first order Roe method and which keeps ·B small in the same sense as Powell's method. As a special case, a method with similar characteristics for accuracy and robustness is obtained for the Euler equations as well.  相似文献   

17.
A numerical method in which the Rankine–Hugoniot condition is enforced at the discrete level is developed. The simple format of central discretization in a finite volume method is used together with the jump condition to develop a simple and yet accurate numerical method free of Riemann solvers and complicated flux splittings. The steady discontinuities are captured accurately by this numerical method. The basic idea is to fix the coefficient of numerical dissipation based on the Rankine–Hugoniot (jump) condition. Several numerical examples for scalar and vector hyperbolic conservation laws representing the inviscid Burgers equation, the Euler equations of gas dynamics, shallow water equations and ideal MHD equations in one and two dimensions are presented which demonstrate the efficiency and accuracy of this numerical method in capturing the flow features.  相似文献   

18.
In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.  相似文献   

19.
We compare four different approximate solvers for the generalized Riemann problem (GRP) for non-linear systems of hyperbolic equations with source terms. The GRP is a special Cauchy problem for a hyperbolic system with source terms whose initial condition is piecewise smooth. We briefly review the four solvers currently available and carry out a systematic assessment of these in terms of accuracy and computational efficiency. These solvers are the building block for constructing high-order numerical schemes of the ADER type for solving the general initial-boundary value problem for inhomogeneous systems in multiple space dimensions, in the frameworks of finite volume and discontinuous Galerkin finite element methods.  相似文献   

20.
针对全MHD (Magnetohydrodynamics)数值模拟中存在伪磁场散度的问题,发展了如下计算方法:基本格式基于八波对称形式方程组,补充相关源项以保持方程组守恒性,并采用投影方法辅助清除伪散度.投影方法中,基于有限体积方法求解三维Poisson方程.算例显示,对于光滑解析磁场,伪磁场散度得到有效清除;对于带激波高超声速MHD流动,全局投影下自由来流区域误差增大.提出一种局部投影方法,在高磁场散度区域进行投影.结果表明,最终流场收敛稳定,高磁场散度得到有效清除,而低散度区域散度不受影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号