首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3)} at T = 298.15 K and (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

2.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and p = (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the dibasic esters layers than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

3.
(Liquid + liquid) equilibrium (LLE) data for the solubility curves and tie-line compositions were examined for mixtures of {water (1) + propionic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and atmospheric pressure, (101.3 ± 0.7) kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters phases than in the aqueous phase. The reliability of the experimental tie-line data were confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC and modified UNIFAC methods. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

5.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for {water (1) + propionic acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters layers than in the aqueous layers. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems was predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

6.
《Fluid Phase Equilibria》2006,248(1):24-28
(Liquid–liquid) equilibrium data for the ternary systems [water + formic acid or acetic acid or propionic acid + cumene (2-phenylpropane, isopropylbenzene)] at 298.15 K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie-lines was determined through the Othmer–Tobias plots. Distribution coefficients and separation factors were evaluated for the immiscibility region. The tie-line data were compared with the results predicted by the UNIFAC method.  相似文献   

7.
Experimental tie-line results and phase diagrams were obtained for the ternary systems of {water + propionic acid + organic solvent (cyclohexane, toluene, and methylcyclohexane)} at T = 303.2 K and atmospheric pressure. The organic solvents were two cycloaliphatic hydrocarbons (i.e., cyclohexane and methylcyclohexane) and an aromatic hydrocarbon (toluene). The experimental tie-lines values were also compared with those calculated by the UNIQUAC and NRTL models. The consistency of the values of the experimental tie-lines was determined through the Othmer–Tobias and Hands plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients and separation factors. The Kamlet LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems. The LSER model values showed a good regression to the experimental results.  相似文献   

8.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

9.
(Liquid–liquid) equilibrium (LLE) data are investigated for mixtures of (water + propionic acid + oleyl alcohol) at 298.15, 308.15 and 318.15 K and atmospheric pressure. The solubility curves and the tie-line end compositions of liquid phases at equilibrium were determined, and the tie-line results were compared with the data predicted by the UNIFAC method. The phase diagrams for the ternary mixtures including both the experimental and correlated tie-lines are presented. The distribution coefficients and the selectivity factors for the immiscibility region are calculated to evaluate the effect of temperature change. The reliability of the experimental tie-lines was confirmed by using Othmer–Tobias correlation. It is concluded that oleyl alcohol may serve as an adequate solvent to extract propionic acid from its dilute aqueous solutions. The UNIFAC model correlates the LLE data for 298.15, 308.15 and 318.15 K with a root mean square deviation of 5.89, 6.46, and 6.69%, respectively, between the observed and calculated mole concentrations.  相似文献   

10.
(Liquid + liquid) equilibrium (LLE) data for (water + acetic acid + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range of (298.2 to 313.2) K. The UNIFAC model was used to predict the observed LLE data with a root-mean-square deviation value of 2.03%. A high degree of consistency of experimental data was obtained using the Othmer–Tobias correlation. The solubility of water in 2-ethyl-1-hexanol was measured at different temperatures.  相似文献   

11.
《Fluid Phase Equilibria》2005,238(1):33-38
Liquid–liquid equilibrium (LLE) data of water + acetic acid + dimethyl succinate were measured at 298.2, 308.2, and 318.2 K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie line data was confirmed by using the Othmer–Tobias correlation. The UNIFAC and modified UNIFAC model were used to predict the phase equilibrium data in the ternary system. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

12.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dipropyl ether) and (water + propionic acid + diisopropyl ether) were measured at T = 298.2 K and atmospheric pressure. The tie-line data were correlated by means of the UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

13.
Phase equilibria of the systems (water + pyruvic acid + high boiling alcohol) have been determined at T = 298.2 K. Among the heavy alcohol solvents studied, 1-decanol gives the largest distribution ratio and separation factors for extraction of pyruvic acid. The distribution data of pyruvic acid are used to establish the basis for an analytical structure to provide optimum extraction. Some aspects of selection of an appropriate criterion for designing optimum extraction of acid are discussed. The solvation energy relation (SERLAS) with 5- and 10-parameters has been performed to correlate the (liquid + liquid) equilibria (LLE) of associated systems containing a protic alcohol solvent capable of hydrogen bonding. The extraction equilibria were also predicted through the UNIFAC-original model. The reliability of both models has been analyzed against the LLE data with respect to the distribution ratio and separation factor.  相似文献   

14.
In this work, trioctyl methyl ammonium chloride (Aliquat 336) was studied for its ability to extract propionic acid at various amine concentrations. The extraction of propionic acid with Aliquat 336 dissolved in five single solvents (cyclohexane, hexane, toluene, methyl isobutyl ketone, and ethyl acetate ) and binary solvents (hexane + MIBK, hexane + toluene, and MIBK + toluene) was investigated under various experimental conditions. The loading factors Z, extraction efficiency E and overall particular distribution coefficients were determined. All measurements were carried out at T = 298.15 K. The obtained results and the observed phenomena were discussed by taking into consideration the mechanism of extraction and the concentration of the interaction product in the aqueous phase.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

16.
17.
Ternary equilibrium data for the mixtures of {water + phosphoric acid + organic solvent (cyclohexane, methylcyclohexane, and toluene)} were determined at T = (308.2 and 318.2) K and atmospheric pressure. Solubility data were determined by the cloud-point titration method. In order to obtain the tie-line data, the concentration of each phase was determined by acidimetric titration, the Karl–Fischer technique, and refractive index measurements. The experimental tie-line data were correlated using the UNIQUAC and NRTL models. The reliability of the experimental data was determined through the Othmer–Tobias and Hand plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions. The Katritzky LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems.  相似文献   

18.
《Fluid Phase Equilibria》2005,227(1):87-96
Liquid–liquid equilibrium data of the solubility (binodal) curves and tie-line end compositions are presented for mixtures of [water (1) + formic acid or propanoic acid or levulinic (4-oxopentanoic) acid or valeric (pentanoic) acid or caproic (hexanoic) acid (2) + 1-octanol (3)] at 293.15 K and 101.3 ± 0.7 kPa. A log-basis approach SERLAS (solvation energy relation for liquid associated system) has been proposed to estimate the properties and liquid–liquid equilibria (LLE) of tertiary associated systems containing proton-donating and -accepting components capable of a physical interaction through hydrogen bonding. The model combines the solvatochromic parameters with the thermodynamic factors derived from the UNIFAC-Dortmund model. The reliability of the model has been analyzed against the LLE data with respect to the distribution ratio and separation factor. The tie-lines were also correlated using the UNIFAC-original model. The proposed model, reflecting the simultaneous impact of hydrogen bonding, solubility and thermodynamic factors, yields a mean error of 27.9% for all the systems considered.  相似文献   

19.
(Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + solvent) were measured at T = 298.2 K and atmospheric pressure. The solvents were methyl isoamyl ketone (5-methyl-2-hexanone), ethyl isoamyl ketone (5-methyl-3-heptanone) and diisobutyl ketone. The tie-line data were correlated by means of the NRTL and UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号