首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present extensive numerical results of bifurcation buckling analysis of the axially compressed circular cylinder. The analysis is based on the modified displacement version of the non-linear theory of thin elastic shells developed by Opoka and Pietraszkiewicz [Opoka, S., Pietraszkiewicz, W., 2009. On modified displacement version of the non-linear theory of thin shells. International Journal of Solids and Structures, 46, 3103–3110.]. To solve the buckling problem we apply the separation of variables and expansion of all fields into Fourier series in circumferential direction, with subsequent accurate calculations of eigenvalues of determinants of corresponding 8 × 8 complicated matrices. The numerical analysis of the buckling load is performed for the cylinders with length-to-diameter ratio in the range (0.05, 60), with eight sets of incremental work-conjugate boundary conditions analogous to those used in the literature and partly summarized in the book by Yamaki [Yamaki, N., 1984. Elastic Stability of Circular Cylindrical Shells. Elsevier, Amsterdam], and additionally with six sets of boundary conditions not discussed in the literature yet. The results allow us to formulate several important conclusions, such as: (a) omission in the non-linear BVP small terms of the order of error introduced by the error of constitutive equations leads to overestimated buckling loads for long cylinders with clamped boundaries; (b) for some relaxed boundary conditions the buckling load decreases for short cylinders with decrease of the cylinder length; (c) the results for additional six sets of boundary conditions reveal existence of several new cases, in which by relaxing geometric boundary conditions the buckling load falls down to about one half of the classical value in a wide range of the cylinder length-to-diameter ratios.  相似文献   

2.
The effect of local geometric defects on the buckling load of axially compressed thin circular cylindrical shells is investigated experimentally. Defects, in the form of diamond-shaped local dimples, similar to the buckles of the Yoshimura pattern, were introduced in otherwise near perfect isotropic epoxy shells by locally heating the shell wall. The behavior of the defects under load was monitored optically using a special whole-field grid-reflection technique. The effects of variations in shell geometry and defect size are also investigated. In general, the results indicate that the effect of local diamond-shaped defects on the stability of the axially loaded cylinder is not as detrimental as that of the global initial imperfections hitherto investigated.  相似文献   

3.
Here, the nonlinear thermo-elastic buckling/post-buckling characteristics of laminated circular conical–cylindrical/conical–cylindrical–conical joined shells subjected to uniform temperature rise are studied employing semi-analytical finite element approach. The nonlinear governing equations, considering geometric nonlinearity based on von Karman’s assumption for moderately large deformation, are solved using Newton–Raphson iteration procedure coupled with displacement control method to trace the pre-buckling/post-buckling equilibrium path. The presence of asymmetric perturbation in the form of small magnitude load spatially proportional to the linear buckling mode shape is assumed to initiate the bifurcation of the shell deformation. The study is carried out to highlight the influences of semi-cone angle, material properties and number of circumferential waves on the nonlinear thermo-elastic response of the different joined shell systems.  相似文献   

4.
An infinitely long, axially compressed, circular cylindrical shell with an imperfection in the shape of the axisymmetric classical buckling mode, undergoing steady or non-steady creep, is analyzed. The axisymmetric problem is solved incrementally using nonlinear shell equations The ratio of the applied stress to the classical buckling stress determines if the shell will collapse axisymmetrically or if it will bifurcate into a nonaxisymmetric mode, and whether or not bifurcation will result in instantaneous collapse. The bifurcation problem is formulated exactly and the initial postbuckling behavior is investigated via an asymptotic elastic analysis, based on Koiter's general theory Numerical results are compared with available experimental data.  相似文献   

5.
We study the buckling of an axially symmetric elastic hemispherical shell, uniformly compressed, subject to a constraint to the radial shifting of the equatorial circumference. The static equilibrium equations, using tensorial notations, are obtained applying the virtual displacements principle to the energy functional. The presence of a constraint does not modify the field equations with respect to the case of a constraint-free buckling, but only influences the boundary conditions, so that, instead of a boundary value problem, we deal with a problem with complementarity conditions on the boundary. We revisit and improve some previously obtained mathematical results, adapting them for the subsequent numerical treatment. Finally, by suitably using a delicate quasi-static shooting technique, numerical results are obtained, which complete the theoretical analysis and give an interesting insight into the behavior of the bifurcation branches.  相似文献   

6.
吴迪  赵宝生 《应用力学学报》2012,29(4):349-352,481
为了得到精确的应力场、位移场、温度场,将扭转圆轴的精化理论研究方法推广到轴对称横观各向同性热弹性圆柱。利用Bessel函数以及轴对称横观各向同性热弹性圆柱的通解,给出了轴对称横观各向同性热弹性圆柱的分解定理。根据柱面齐次边界条件获得了精确的精化方程,精化方程可以分解为一阶方程、超越方程、温度方程,从而将横观各向同性热弹性圆柱的轴对称问题分解为轴向拉压问题、超越问题、热-应力耦合问题。超越部分对应端部自平衡情况,可以清晰地了解到端部应力分布对内部应力场的影响,热-应力耦合部分对应无外加应力场时圆柱内部因温度变化引起的热应力。  相似文献   

7.
I.IntroductionStiffenedandunstiffenedcircularcylindricalshellsfoundwideusesasprimarystructuralcomponentsinunderwatervehicles,offshoreplatformsandotherstructuralconfigurations.Theinitialinvestigationofthebucklingofstiffenedandunstiffenedcircularcylindrical…  相似文献   

8.
The classical problem of stability of a thin elastic cylindrical shell loaded by axial compressions forces is considered. The axially symmetric and non-axisymmetric buckling modes of isotropic and orthotropic shells are studied. In contrast to the traditional approach, the well-known expressions for the critical load are obtained by analyzing the equations for the shell behavior and are independent of the boundary conditions.  相似文献   

9.
10.
Experiments were performed to study the deformation and buckling of axially compressed circular cylindrical shells of Zr2.5Nb zirconium alloy under creep conditions. Computer simulation using the MSC.Marc 2012 software was conducted by step-by-step integration of the equations of quasistatic deformation of thin shells using Norton’s law of steady creep. The results of the experiment and computer simulation show that the buckling modes are a combination of axisymmetric bulges located near one end or both ends of the shell and axisymmetric buckling modes with the formation of three or four waves in the circumferential direction. A comparison is made of the time dependences of the axial strain of the shells obtained in the experiment and by computer simulation. It is shown that for large axial compressive stresses, these dependences are in satisfactory agreement. For lower values of these stresses, the difference between the theoretical and experimental dependences is greater.  相似文献   

11.
加权残值法分析轴压圆柱薄壳后屈曲问题   总被引:1,自引:0,他引:1  
本文首次应用了样条配点法分析了受到轴向压力的圆柱形薄壳的后屈问题,壳体的方程是L.H.Donnell的非线性正交异性圆柱形壳体方程,壳体的挠度试函数及应力函数试函数都是于轴向用了五次B样条函数基函数,周向用余弦函数。计算模型是周向为半个波长的壳块,可适应后屈曲实验变形跳跃现象。非线性代数方程组用了Newton—Rophson迭代法求解。由此所得的理论上的后屈曲曲线与国外近代实验相符。  相似文献   

12.
13.
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints.  相似文献   

14.
15.
In this paper we derive non-linear modal equations for thin elastic shells of arbitrary geometry. Geometric non-linearities are accounted for by utilizing the strain-displacement relations of the Sanders-Koiter non-linear shell theory. Arbitrary initial imperfections are accounted for and the shell thickness is free to vary within the limits of thin shell theory. The derivation gives the coefficients of the modal equations as integral expressions over the surface of the shell. The resulting equations are well-suited for practical applications. Weighting factors are introduced to allow for reduction of our results to the Love shell theory and to the Donnell approximation. The equations are specialized for a finite simply supported circular cylinder and numerical results are compared to those previously published in the literature.  相似文献   

16.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

17.
This paper presents a thorough and comprehensive investigation of non-linear buckling and postbuckling analyses of pin-ended shallow circular arches subjected to a uniform radial load and which have equal elastic rotational end-restraints. The differential equations of equilibrium for non-linear buckling and postbuckling are established based on a virtual work approach. Exact solutions for the non-linear bifurcation, limit point and lowest buckling loads are obtained; in particular, exact solutions for the non-linear postbuckling equilibrium paths are derived. The criteria for switching between fundamental buckling and postbuckling modes are developed in terms of critical values of a geometric parameter for an arch, with exact solutions for these critical values of geometric parameter being obtained. Analytical solutions of non-linear buckling and postbuckling problems for arches with rotational end-restraints are of great interest, since they constitute one of the very few closed-form analyses of buckling and postbuckling behaviour of continuous structural systems. These exact solutions are a contribution to the non-linear structural mechanics of arches, as well as providing useful benchmark solutions for verifying non-linear numerical analyses.  相似文献   

18.
提出了一种分析交各向异性圆柱壳和阶梯圆柱壳稳定性问题的混合变量条形传递函数方法。首先基于Fluegge薄壳理论,通过定义广义位移变量和对应的广义力变量,建立了圆柱壳混合变量能量泛函;然后通过引入条形单元,定义混合状态变量和采用传递函数方法对超级壳单元求解,得到具有多种边界条件圆柱壳屈曲问题的半解析解;最后通过位移连续和力平衡条件,可以得到阶梯圆柱壳屈曲问题的解。理论解推导过程表明此方法在引入边界条件和进行阶梯圆柱壳求解时非常方便。算例分析的结果验证了本方法的正确性。  相似文献   

19.
IntroductionImportantaplicationsofthestabilityanalysisofshelscanbefoundinthemodernengineringrangingovertheaerospace,marine,ar...  相似文献   

20.
As is well known, the elastic stability of shell structures under certain loading conditions is characterised by a severely unstable postbuckling behaviour. The presence of simultaneous buckling modes (‘competing’ modes corresponding to the same critical buckling load) is deemed to be largely responsible for such a behaviour. In the present paper, within the framework of the so-called classical theory (linear bifurcation eigenvalue analysis), the buckling behaviour of axially compressed cylindrical shells is firstly reviewed. Accordingly, doubly periodic eigenvectors (buckling modes) corresponding to the same eigenvalue (critical buckling load) can be determined, and their locus in a dimensionless meridional and circumferential buckling wavenumber space is described by a circle (known as the Koiter circle). In the case of axially compressed conical shells, no clear evidence of the existence of simultaneous buckling modes can be found in the literature. Then, such a problem is studied here via linear eigenvalue finite element analyses, showing that simultaneous doubly periodic modes do also occur for cones, and that their locus in a specifically defined dimensionless wavenumber space can be described by an ellipse (hereafter termed as the Koiter ellipse) whose aspect ratio is dependent on the tapering angle of the cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号