首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Here we investigate the accuracy of the overlap criterion when applied to a simple near-integrable model in both its 2D and 3D versions. To this end, we consider, respectively, two and three quartic oscillators as the unperturbed system, and couple the degrees of freedom by a cubic, non-integrable perturbation. For both systems we compute the unperturbed resonances up to order O(ε2), and model each resonance by means of the pendulum approximation in order to estimate the theoretical critical value of the perturbation parameter for a global transition to chaos. We perform several surface of sections for the bi-dimensional case to derive an empirical value to be compared to our theoretical estimation. Although both values are of the same order of magnitude, there is a significant difference between them. For the 3D case a numerical estimate is attained that we observe matches quite well the critical value resulting from theoretical means. This confirms once again that calculating resonances up to O(ε2) suffices in order the overlap criterion to work out.  相似文献   

3.
The use of the stretched-exponential function to represent both the relaxation function g(t)=(G(t)-G )/(G 0-G ) and the retardation function r(t) = (J +t/η-J(t))/(J -J 0) of linear viscoelasticity for a given material is investigated. That is, if g(t) is given by exp (?(t/τ)β), can r(t) be represented as exp (?(t/λ)µ) for a linear viscoelastic fluid or solid? Here J(t) is the creep compliance, G(t) is the shear modulus, η is the viscosity (η?1 is finite for a fluid and zero for a solid), G is the equilibrium modulus G e for a solid or zero for a fluid, J is 1/G e for a solid or the steady-state recoverable compliance for a fluid, G 0= 1/J 0 is the instantaneous modulus, and t is the time. It is concluded that g(t) and r(t) cannot both exactly by stretched-exponential functions for a given material. Nevertheless, it is found that both g(t) and r(t) can be approximately represented by stretched-exponential functions for the special case of a fluid with exponents β=µ in the range 0.5 to 0.6, with the correspondence being very close with β=µ=0.5 and λ=2τ. Otherwise, the functions g(t) and r(t) differ, with the deviation being marked for solids. The possible application of a stretched-exponential to represent r(t) for a critical gel is discussed.  相似文献   

4.
We consider the homogenization of a time-dependent heat transfer problem in a highly heteregeneous periodic medium made of two connected components having finite heat capacities cα(x) and heat conductivities aα(x), α=1,2, of order one, separated by a third material with thickness of order ε the size of the basic periodicity cell, but with conductivity λa3(x) where a3=O(1) and λ tends to zero with ε. Assuming only that ci(x)?0 a.e., such that the problem can degenerate (parabolic-elliptic), we identify the homogenized problem following the values of δ=limε→0ε2/λ. To cite this article: M. Mabrouk, A. Boughammoura, C. R. Mecanique 331 (2003).  相似文献   

5.
We consider the vibrations of a membrane that contains a very thin and heavy inclusion around a curve γ. We assume that the membrane occupies a domain Ω of R2. The inclusion occupies a layer-like domain ωε of width 2ε and it has a density of order O(ε?3). The density is of order O(1) outside this inclusion, the concentrated mass around the curve γ. ε is a positive parameter, ε∈(0,1). By means of asymptotic expansions, we describe the behaviour, as ε→0, of the eigenelements (λε,uε) of the associated spectral problem. We provide complete asymptotic series for the low frequencies λε=O(ε2), the medium frequencies λε=O(ε) and the corresponding eigenfunctions uε. To cite this article: Y. Golovaty et al., C. R. Mecanique 330 (2002) 777–782.  相似文献   

6.
The quantum-mechanical average-atom model is reviewed and applied to determine scattering phase shifts, mean-free paths, and relaxation times in warm-dense plasmas. Static conductivities σ are based on an average-atom version of the Ziman formula. Applying linear response to the average-atom model leads to an average-atom version of the Kubo–Greenwood formula for the frequency-dependent conductivity σ(ω). The free–free contribution to σ(ω) is found to diverge as 1/ω2 at low frequencies; however, considering effects of multiple scattering leads to a modified version of σ(ω) that is finite and reduces to the Ziman formula at ω = 0. The resulting average-atom version of the Kubo–Greenwood formula satisfies the conductivity sum rule. The dielectric function ε(ω) and the complex index of refraction n(ω) + (ω) are inferred from σ(ω) using dispersion relations. Applications to anomalous dispersion in laser-produced plasmas are discussed.  相似文献   

7.
This work continues the calculation of the stress intensity factors, as a function of position s along the front of an arbitrary (kinked and curved) infinitesimal extension of some arbitrary crack on some three-dimensional body. More precisely, ε denoting a small parameter which the crack extension length is proportional to, what is studied here is the third term, proportional to εfn2 = ε and noted K (1) (s) ε, of the expansion of these stress intensity factors at the point s of the crack front in powers of ε. The novelties with respect to previous works due to Gao and Rice on the one hand and Nazarov on the other hand, are that both the original crack and its extension need not necessarily be planar, and that a kink (discontinuity of the tangent plane to the crack) can occur all along the original crack front. Two expressions of K (1) (s) are obtained; the difference is that the first one is more synthetic whereas the second one makes the influence of the kink angle (which can vary along the original crack front) more explicit. Application of some criterion then allows to obtain the apriori unknown geometric parameters of the small crack extension (length, kink angle, curvature parameters). The small scale segmentation of the crack front which is observed experimentally in the presence of mode III is disregarded here because a large scale point of view is adopted; this phenomenon will be discussed in a separate paper. It is shown how these results can be used to numerically predict crack paths over arbitrary distances in three dimensions. Simple applications to problems of configurational stability and bifurcation of the crack front are finally presented.  相似文献   

8.
This article establishes an approximation in the implicit form (within the limits of error) of solutions of [L + M(ε)]x = ρ(t, x) satisfying the limiting conditions x(2k)(0) = x(2k+1)(τ) = 0, k = 0,1,…, n?1, L being a linear differential operator of degree equal to 2n with constant coefficients and M(ε) a differential operator of an inferior order enabling the absorption terms and the coefficients to vary slowly. f(t,x) is continuous in the sense of Lipschitz, not negative, monotonous, increasing in x and of the saturation type.  相似文献   

9.
We consider the singularly perturbed system $\dot x$ =εf(x,y,ε,λ), $\dot y$ =g(x,y,ε,λ). We assume that for small (ε,λ), (0,0) is a hyperbolic equilibrium on the normally hyperbolic centre manifold y=0 and that y 0(t) is a homoclinic solution of $\dot y$ =g(0,y,0,0). Under an additional condition, we show that there is a curve in the (ε,λ) parameter space on which the perturbed system has a homoclinic orbit also. We investigate the transversality properties of this orbit and use our results to give examples of 4 dimensional systems with Sil'nikov saddle-focus homoclinic orbits.  相似文献   

10.
We study the initial boundary value problem for the reaction–diffusion equation,
?tuε??·(aε?uε)+g(uε)=hε
in a bounded domain Ω with periodic microstructure F(ε)M(ε), where aε(x) is of order 1 in F(ε) and κ(ε) in M(ε) with κ(ε)→0 as ε→0. Combining the method of two-scale convergence and the variational homogenization we obtain effective models which depend on the parameter θ=limε→0κ(ε)/ε2. In the case of strictly positive finite θ the effective problem is nonlocal in time that corresponds to the memory effect. To cite this article: L. Pankratov et al., C. R. Mecanique 331 (2003).  相似文献   

11.
Deductive similarity analysis is employed to study one-dimensional wave propagation in rate dependent materials whose constitutive laws are special cases of Maxwellian materials (σt = φ(ε, σ)εt + ψ(ε, σ), ε = strain, σ = stress). The general problem is shown not to have a similar solution although many special cases have the independent similar variable (x ? c)/(t ? d)e. These cases are studied and tabulated. Analytic similar solutions are presented for several cases and a discussion of permissable boundary conditions is given.  相似文献   

12.
Inclusion problems for elongated toroidal inclusions are solved to discuss the strain fields caused by eigenstrained doughnut-like and tubular inclusions. For an infinitely long tubular inclusion, uniform eigenstrains do not generate elastic strains in the matrix region inside the tube. Effects of tube length on the elastic strains are shown for the purely dilatational eigenstrain *. For the tubular inclusion with the length 2b, the elastic strain at the center of the matrix region inside the tube becomes the maximum as much as ≈(a/b)* when the tubular inclusion has the inner diameter ≈2(ba) and the outer diameter ≈2(b+a).  相似文献   

13.
A factorization approximation is introduced to the cumulant expansion of the characteristic functional for homogeneous turbulence. Under this approximation, an arbitrary nth order cumulant C(itn) is expressed in terms of the cumulants C(2),C(3) and C(n−1), and thus we obtain a closed but untruncated system of equations for the cumulants. Using the factorized fourth-cumulant approximation, a closed set of equations for the energy spectrum function E(k,t) and the energy transfer function T(k,t) is derived. These equations are solved numerically and the similarity laws of the solutions are derived analytically. The statistical quantities such as the energy, the enstrophy, Taylor's microscale and the skewness of the velocity derivative are calculated numerically and the statistical laws of these quantities are discussed.  相似文献   

14.
We monitor the time-dependent shear compliance of a solution of semi-flexible polymers, using diffusing wave spectroscopy (DWS) and video-enhanced single-particle-tracking (SPT) microrheology. These two techniques use the small thermally excited motion of probing microspheres to interrogate the local properties of polymer solutions. The solutions consist of networks of actin filaments which are long semi-flexible polymers. We establish a relationship between the mean square displacement (MSD) of microspheres imbedded in the solution and the time-dependent creep compliance of the solution, <Δr 2(t)>=(k B Ta)J(t). Here, J(t) is the creep compliance, <Δr 2(t)> is the mean-square displacement, and a is the radius of the microsphere chosen to be larger than the mesh size of the polymer network. DWS allows us to measure mean square displacements with microsecond temporal resolution and Ångström spatial resolution. At short times, the mean square displacement of a 0.96μm diameter sphere in a concentrated actin solution displays sub-diffusion. <Δr 2(t)>∝t , with a characteristic exponent =0.78±0.05, which reflects the finite rigidity of actin. At long times, the MSD reaches a plateau, with a magnitude that decreases with concentration. The creep compliance is shown to be a weak function of polymer concentration and scales as J p c –1.2±0.3. This exponent is correctly described by a recent model describing the viscoelasticity of semi-flexible polymer solutions. The DWS and video-enhanced SPT measurements of the compliance plateau agree quantitatively with compliance measured independently using classical mechanical rheometry for a viscous oil and for a solution of flexible polymers. This paper extends the use of DWS and single-particle-tracking to probe the local mechanical properties of polymer networks, shows for the first time the proportionality between mean square displacement and local creep compliance, and therefore presents a new, direct way to extract the viscoelastic properties of polymer systems and complex fluids.  相似文献   

15.
Ordinary differential equations (ODEs) with fractional order derivatives are infinite dimensional systems and nonlocal in time: the history of the state variable is needed to calculate the instantaneous rate of change. This nonlocal nature leads to expensive long-time computations (O(t 2) computations for solution up to time t). A finite dimensional approximation of the fractional order derivative can alleviate this problem. We present one such approximation using a Galerkin projection. The original infinite dimensional system is replaced with an equivalent infinite dimensional system involving a partial differential equation (PDE). The Galerkin projection reduces the PDE to a finite system of ODEs. These ODEs can be solved cheaply (O(t) computations). The shape functions used for the Galerkin projection are important, and given attention. The approximation obtained is specific to the fractional order of the derivative; but can be used in any system with a derivative of that order. Calculations with both global shape functions as well as finite elements are presented. The discretization strategy is improved in a few steps until, finally, very good performance is obtained over a user-specifiable frequency range (not including zero). In particular, numerical examples are presented showing good performance for frequencies varying over more than 7 orders of magnitude. For any discretization held fixed, however, errors will be significant at sufficiently low or high frequencies. We discuss why such asymptotics may not significantly impact the engineering utility of the method.  相似文献   

16.
The aim of the present paper is to examine the effect of a quasi-periodic gravitational modulation on the onset of convective instability in Hele-Shaw cell. The quasi-periodic modulation considered here consists in a modulation having two incommensurate frequencies. This study is an extension of a previous work by Aniss et al. [Asymptotic study of the convective parametric instability in Hele-Shaw cell, Phys. Fluids 12 (2) (2000) 262-268] in which only a periodic gravitational modulation was considered. We have shown that for Pr=O(1) or Pr?1, the gravitational modulation has no effect on the convective threshold as expected. However, for Pr=O(ε2), it turns out that a modulation with two incommensurate frequencies has a stabilizing or a destabilizing effect strongly depending on the frequencies ratio.  相似文献   

17.
By employing the method of multiple time scales, we derive here the transport equations for the primary amplitudes of resonantly interacting high-frequency waves propagating into a non-equilibrium gas flow. Evolutionary behavior of non-resonant wave modes culminating into shocks or no shocks, together with their asymptotic decay behavior, is studied. Effects of non-linearity, which are noticeable over times of order O(ε-1), are examined, and the model evolution equations for resonantly interacting multi-wave modes are derived.  相似文献   

18.
In this paper, uniform pointwise regularity estimates for the solutions of conductivity equations are obtained in a unit conductivity medium reinforced by an ε-periodic lattice of highly conducting thin rods. The estimates are derived only at a distance ε 1+τ (for some τ > 0) away from the fibres. This distance constraint is rather sharp since the gradients of the solutions are shown to be unbounded locally in L p as soon as p > 2. One key ingredient is the derivation in dimension two of regularity estimates to the solutions of the equations deduced from a Fourier series expansion with respect to the fibres’ direction, and weighted by the high-contrast conductivity. The dependence on powers of ε of these two-dimensional estimates is shown to be sharp. The initial motivation for this work comes from imaging, and enhanced resolution phenomena observed experimentally in the presence of micro-structures (Lerosey et al., Science 315:1120–1124, 2007). We use these regularity estimates to characterize the signature of low volume fraction heterogeneities in the fibred reinforced medium, assuming that the heterogeneities stay at a distance ε 1+τ away from the fibres.  相似文献   

19.
By potential theory, elastic problems with linear boundary conditions are converted into boundary integral equations (BIEs) with logarithmic and Cauchy singularity. In this paper, a mechanical quadrature method (MQMs) is presented to deal with the logarithmic and the Cauchy singularity simultaneously for solving the boundary integral equations. The convergence and stability are proved based on Anselone??s collective compact and asymptotical compact theory. Furthermore, an asymptotic expansion with odd powers of errors is presented, which possesses high accuracy order O(h 3). Using h 3?Richardson extrapolation algorithms (EAs), the accuracy order of the approximation can be greatly improved to O(h 5), and an a posteriori error estimate can be obtained for constructing a self-adaptive algorithm. The efficiency of the algorithm is illustrated by examples.  相似文献   

20.
This paper is devoted to the stationary problem of third-grade fluids in two and three dimensions. In two dimensions, we show existence of solutions and uniqueness, for a boundary of class C2,1 and small data, by generalizing the method used by J.M. Bernard for the stationary problem of second-grade fluids (we deal with a polynomial of four degrees instead of two degrees). Contrary to the case of two dimensions, the resolution of the problem of third-grade fluids in three dimensions requires the physical condition |α1+α2|<(24νβ)1/2. From this condition, we derive two “pseudo ellipticities” for the operator ν|A(u)|2+(α1+α2)tr(A(u)3)+β|A(u)|4, where A(u) is a 3-order symmetric matrix such that tr(A(u))=0. Thus, with, in addition, a sharp estimate of the scalar product (|A(u)|2A(u)-|A(v)|2A(v),A(u)-A(v)), we are able to prove existence of solutions and uniqueness, for a boundary of class C2,1 and small data, in three dimensions.

Résumé

Cet article est consacré au problème stationnaire des fluides de grade trois en dimension deux et trois. En dimension deux, nous montrons l’existence de solutions et l’unicité, pour une frontière de classe C2,1 et une donnée petite, en généralisant la méthode utilisée par J.M. Bernard pour le problème stationnaire des fluides de grade deux (nous avons affaire à un polynôme de degré quatre au lieu de deux). Contrairement au cas de la dimension deux, la résolution du problème des fluides de grade trois en dimension trois requière la condition physique |α1+α2|<(24νβ)1/2. De cette condition, nous déduisons deux “pseudo matrice” pour l’opérateur ν|A(u)|2+(α1+α2)tr(A(u)3)+β|A(u)|4, où A(u) est une matice symétrique d’ordre 3 à trace nulle. De là, avec, en plus, une fine estimation du produit scalaire (|A(u)|2A(u)-|A(v)|2A(v),A(u)-A(v)), nous sommes capables de prouver l’existence de solutions et l’unicité, pour une frontière de classe C2,1 et une donnée petite, en dimension trois.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号