首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we propose a charge-conservative scheme to solve two-phase electrohydrodynamic (EHD) problems using the volume-of-fluid (VOF) method. EHD problems are usually simplified by assuming that the fluids involved are purely dielectric (insulators) or purely conducting. Gases can be considered as perfect insulators but pure dielectric liquids do not exist in nature and insulating liquids have to be approximated using the “Taylor–Melcher leaky dielectric model” [1], [2] in which a leakage of charge through the liquid due to ohmic conduction is allowed. It is also a customary assumption to neglect the convection of charge against the ohmic conduction. The scheme proposed in this article can deal with any EHD problem since it does not rely on any of the above simplifications. An unrestricted EHD solver requires not only to incorporate electric forces in the Navier–Stokes equations, but also to consider the charge migration due to both conduction and convection in the electric charge conservation equation [3]. The conducting or insulating nature of the fluids arise on their own as a result of their electric and fluid mechanical properties. The EHD solver has been built as an extension to Gerris, a free software solver for the solution of incompressible fluid motion using an adaptive VOF method on octree meshes developed by Popinet [4], [5].  相似文献   

2.
Many continuum theories for granular flow produce an equation of motion for the fluctuating kinetic energy density (granular temperature) that accounts for the energy lost in inelastic collisions. Apart from the presence of an extra dissipative term, this equation is very similar in form to the usual temperature equation in hydrodynamics. It is shown how a lattice-kinetic model based on the Bhatnagar-Gross-Krook (BGK) equation that was previously derived for a miscible two-component fluid may be modified to model the continuum equations for granular flow. This is done by noting that the variable corresponding to the concentration of one species follows an equation that is essentially analogous to the granular temperature equation. A simulation of an unforced granular fluid using the modified model reproduces the phenomenon of clustering instability, namely the spontaneous agglomeration of particles into dense clusters, which occurs generically in all granular flows. The success of the continuum theory in capturing the gross features of this basic phenomenon is discussed. Some shear flow simulations are also presented.  相似文献   

3.
王贺  田方宝  刘向东 《中国物理 B》2022,31(2):24701-024701
A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen–Cahn equation(ACE).By adopting the improved form of a relaxation matrix and an equilibrium distribution function,the time derivative?t(φ)induced by recovering the diffusion term in ACE is eliminated.The conducted Chapman–Enskog analysis demonstrates that the correct conservative ACE is recovered.Four benchmark cases including Zalesak’s disk rotation,vortex droplet,droplet impact on thin film,and Rayleigh–Taylor instability are investigated to validate the proposed model.The numerical results indicate that the proposed model can accurately describe the complex interface deformation.  相似文献   

4.
In this paper, we present the development of a sharp numerical scheme for multiphase electrohydrodynamic (EHD) flows for a high electric Reynolds number regime. The electric potential Poisson equation contains EHD interface boundary conditions, which are implemented using the ghost fluid method (GFM). The GFM is also used to solve the pressure Poisson equation. The methods detailed here are integrated with state-of-the-art interface transport techniques and coupled to a robust, high order fully conservative finite difference Navier–Stokes solver. Test cases with exact or approximate analytic solutions are used to assess the robustness and accuracy of the EHD numerical scheme. The method is then applied to simulate a charged liquid kerosene jet.  相似文献   

5.
Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we extend the study of Veerapaneni et al. [S.K. Veerapaneni, D. Gueyffier, G. Biros, D. Zorin, A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows, Journal of Computational Physics 228 (19) (2009) 7233–7249] to general non-axisymmetric vesicle flows in three dimensions.  相似文献   

6.
A new particle method is presented for the numerical simulation of compressible inviscid gas flows, through procedures which involve relatively small modifications to an existing direct simulation Monte Carlo (DSMC) algorithm. Implementation steps are outlined for simulations involving various grid geometries and for gas mixtures comprising an arbitrary number of species. The proposed method is compared with other numerical schemes through a series of one-dimensional and two-dimensional test cases, and is shown to provide a significant reduction in both artificial diffusion and statistical scatter effects relative to existing DSMC-based equilibrium particle methods.  相似文献   

7.
In this paper we present a simple theoretical model of how pulsed ultrasound is attenuated by the particles in a solid/liquid flow. The theoretical model is then used to predict the attenuation of sound, given the mass fraction, the density, and the size distribution of the solid particles. The model is verified experimentally for suspensions of 0-10% (by mass) Dolomite ((Ca,Mg)CO3) particles and water. The experimental results show that the attenuation of sound due to particles varies linearly with mass fraction, and that the proposed theoretical model can be used to predict this attenuation. In all experiments the transmitter and receiver array were clamped onto the pipe wall, thus providing a completely non-invasive and non-intrusive measurement technique.  相似文献   

8.
In multiphase flows, the length scales of thin regions, such as thin films between nearly touching drops and thin threads formed during the interface pinch-off, are usually several orders of magnitude smaller than the size of the drops. In this paper, a number of extra length criteria for adaptive meshes are developed and implemented in the moving mesh interface tracking method to solve these multiple-length-scale problems with high fidelity. A nominal length scale based on the solutions of Laplace’s equations with the unit normal vectors of surfaces as the boundary conditions is proposed for the adaptive mesh refinement in the thin regions. For almost flat interfaces/boundaries which are near to the thin regions, the averaged length of the interior edges sharing the two nodes with the boundary edge is introduced for the mesh adaptation. The averaged length of the interfacial edges is used for the interior elements near the interfaces but outside of the thin regions. For the interior mesh away from the interfaces/boundaries, different averaged length scales based on the initial mesh are employed for the adaptive mesh refining and coarsening. Numerous cases are simulated to demonstrate the capability of the proposed schemes in handling multiple length scales, which include the relaxation and necking of an elongated droplet, droplet–droplet head-on approaching, droplet-wall interactions, and a droplet pair in a shear flow. The smallest length resolved for the thin regions is three orders of magnitude smaller than the largest characteristic length of the problem.  相似文献   

9.
A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus obeys (at least approximately) Kolmogorov scaling.  相似文献   

10.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

11.
Optimization of laser light scatter detection technique based on the geometrical optics method for measuring the size, velocity and refractive index of spherical particles was performed. A new optical orientation for extended phase-Doppler anemometry (EPDA) had been developed to improve the accuracy of particle material recognition in multiphase flow. The effects of both the intensity and phase factor of the reflected and refracted light were examined. The inverse sign of the phase factors from the refracted light and reflected light resulted in a (2πφ) effect on phase determination. This was used for minimizing and validating the errors in the refractive index measurements of large particles. Furthermore, optimization results were compared with the results of simulation based on the generalized Lorenz–Mie theory (GLMT). A newly developed signal validation scheme was also described in detail. The scheme was used to reject the inaccurate data in order to further improve the accuracy of the recognition.  相似文献   

12.
This paper is a review on implementation of measuring systems for two-phase helium, hydrogen, liquefied natural gas (LNG), and oil-formation/salty water flows. Two types of such systems are presented. The first type is based on two-phase flow-meters combining void fraction radio-frequency (RF) sensors and narrowing devices. They can be applied for superconducting accelerators cooled with two-phase helium, refueling hydrogen system for space ships and some applications in oil production industry. The second one is based on combination of a gamma-densitometer and a narrowing device. These systems can be used to monitor large two-phase LNG and oil-formation water flows. An electronics system based on a modular industrial computer is described as well. The metrological characteristics for different flow-meters are presented and the obtained results are discussed. It is also shown that the experience gained allows separationless flow-meter for three-phase oil-gas-formation water flows to be produced.  相似文献   

13.
The particle-in-cell method (PIC), especially the latest version of it, the material point method (MPM), has shown significant advantage over the pure Lagrangian method or the pure Eulerian method in numerical simulations of problems involving large deformations. It avoids the mesh distortion and tangling issues associated with Lagrangian methods and the advection errors associated with Eulerian methods. Its application to multiphase flows or multi-material deformations, however, encounters a numerical difficulty of satisfying continuity requirement due to the inconsistence of the interpolation schemes used for different phases. It is shown in Section 3 that current methods of enforcing this requirement either leads to erroneous results or can cause significant accumulation of errors. In the present paper, a different numerical method is introduced to ensure that the continuity requirement is satisfied with an error consistent with the discretization error and will not grow beyond that during the time advancement in the calculation. This method is independent of physical models. Its numerical implementation is quite similar to the common method used in Eulerian calculations of multiphase flows. Examples calculated using this method are presented.  相似文献   

14.
15.
16.
A two-dimensional double Multiple Relaxation Time-Thermal Lattice Boltzmann Equation (2-MRT-TLBE) method is developed for predicting convective flows in a square differentially heated cavity filled with air (Pr=0.71). In this Letter, we propose a numerical scheme to solve the flow and the temperature fields using the MRT-D2Q9 model and the MRT-D2Q5 model, respectively. Thus, the main objective of this study is to show the effectiveness of such model to predict thermodynamics for heat transfer. This model is validated by the numerical simulations of the 2-D convective square cavity flow. Excellent agreements are obtained between numerical predictions. These results demonstrate the accuracy and the effectiveness of the proposed methodology.  相似文献   

17.
《Composite Interfaces》2013,20(1):93-107
Two interface models based on physical considerations are proposed to analyze the freeedge effects in unidirectional multilayered composites. The first model is a transition behavior law describing the graded properties of the interlayer between two adjacent layers. It is defined according to the stacking direction and based on a microscopic analysis of the fiber distribution in the vicinity of the interlayer. Used in a numerical simulation, this model gives accurate stress distributions in the laminate, including the interlaminar stresses at the free-edge that are not singular. The second model utilizes an interface law, defined on the material surface, resulting from the asymptotic resolution of an elastic problem pertaining to the interlayer and simulating a very thin flexible layer. This model also gives no singular free-edge interlaminar stresses close to those obtained with the first model.  相似文献   

18.
A balanced force refined level set grid method for two-phase flows on structured and unstructured flow solver grids is presented. To accurately track the phase interface location, an auxiliary, high-resolution equidistant Cartesian grid is introduced. In conjunction with a dual-layer narrow band approach, this refined level set grid method allows for parallel, efficient grid convergence and error estimation studies of the interface tracking method. The Navier–Stokes equations are solved on an unstructured flow solver grid with a novel balanced force algorithm for level set methods based on the recently proposed method by Francois et al. [M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys. 213 (2006) 141–173] for volume of fluid methods on structured grids. To minimize spurious currents, a second order converging curvature evaluation technique for level set methods is presented. The results of several different test cases demonstrate the effectiveness of the proposed method, showing good mass conservation properties and second order converging spurious current magnitudes.  相似文献   

19.
We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh number Ra~10(7). We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects develop, the mean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of the buoyant bubble leading to high non-gaussian profiles in the bulk.  相似文献   

20.
An enhanced Multi-dimensional Limiting Process (e-MLP) is developed for the accurate and efficient computation of multi-dimensional flows based on the Multi-dimensional Limiting Process (MLP). The new limiting process includes a distinguishing step and an enhanced multi-dimensional limiting process. First, the distinguishing step, which is independent of high order interpolation and flux evaluation, is newly introduced. It performs a multi-dimensional search of a discontinuity. The entire computational domain is then divided into continuous, linear discontinuous and nonlinear discontinuous regions. Second, limiting functions are appropriately switched according to the type of each region; in a continuous region, there are no limiting processes and only higher order accurate interpolation is performed. In linear discontinuous and nonlinear discontinuous regions, TVD criterion and MLP limiter are respectively used to remove oscillation. Hence, e-MLP has a number of advantages, as it incorporates useful features of MLP limiter such as multi-dimensional monotonicity and straightforward extensionality to higher order interpolation. It is applicable to local extrema and prevents excessive damping in a linear discontinuous region through application of appropriate limiting criteria. It is efficient because a limiting function is applied only to a discontinuous region. In addition, it is robust against shock instability due to the strict distinction of the computational domain and the use of regional information in a flux scheme as well as a high order interpolation scheme. This new limiting process was applied to numerous test cases including one-dimensional shock/sine wave interaction problem, oblique stationary contact discontinuity, isentropic vortex flow, high speed flow in a blunt body, planar shock/density bubble interaction, shock wave/vortex interaction and, particularly, magnetohydrodynamic (MHD) cloud-shock interaction problems. Through these tests, it was verified that e-MLP substantially enhances the accuracy and efficiency with both continuous and discontinuous multi-dimensional flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号