首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The present work deals with the aeroacoustic sound radiated by a forward–backward facing step in combination with a flexible wall behind the step. A numerical flow computation with coupled aeroacoustic and vibroacoustic simulation was carried out. The structural deformations of the oscillating plate like structure in the wake of the forward–backward facing step were considered to be small and therefore not affecting the flow field. The presented approach enables a separate consideration for the aeroacoustic as well as the structural borne noise. The influence of the interactions of the acoustic medium with the flexible structure on the vibroacoustic sound radiation is investigated. One-sided and two-sided coupling approaches for the vibroacoustic analysis are introduced. The two-sided vibroacoustic computation allows for considering the damping influence of the ambient fluid on the flexible plate vibration and therefore on the sound radiation. Additional to the simulations, aeroacoustic measurements in an acoustic wind tunnel were performed for validation purposes.  相似文献   

3.
Theoretical analysis of the nonlinear vibration effects on the sound absorption of a panel absorber and sound transmission loss of a panel backed by a rectangular cavity is herein presented. The harmonic balance method is employed to derive a structural acoustic formulation from two-coupled partial differential equations representing the nonlinear structural forced vibration and induced acoustic pressure; one is the well-known von Karman??s plate equation and the other is the homogeneous wave equation. This method has been used in a previous study of nonlinear structural vibration, in which its results agreed well with the elliptic solution. To date, very few classical solutions for this nonlinear structural-acoustic problem have been developed, although there are many for nonlinear plate or linear structural-acoustic problems. Thus, for verification purposes, an approach based on the numerical integration method is also developed to solve the nonlinear structural-acoustic problem. The solutions obtained with the two methods agree well with each other. In the parametric study, the panel displacement amplitude converges with increases in the number of harmonic terms and acoustic and structural modes. The effects of excitation level, cavity depth, boundary condition, and damping factor are also examined. The main findings include the following: (1)?the well-known ??jump phenomenon?? in nonlinear vibration is seen in the sound absorption and transmission loss curves; (2)?the absorption peak and transmission loss dip due to the nonlinear resonance are significantly wider than those in the linear case because of the wider resonant bandwidth; and (3)?nonlinear vibration has the positive effect of widening the absorption bandwidth, but it also degrades the transmission loss at the resonant frequency.  相似文献   

4.
密闭腔体声-结构耦合系统的动力灵敏度分析   总被引:5,自引:0,他引:5  
以密闭空腔为对象,开展了声-结构耦合系统的动力分析和灵敏度计算,为系统性态优化设计提供理论和算法基础。分别把结构和声场进行离散化,推导了声-结构耦合系统的有限元方程,求解了耦合系统的频率和声压级响应。在此基础上,以结构尺寸为设计变量,计算了耦合系统的固有频率和声压级响应的灵敏度,解决了声-结构耦合系统动力灵敏度的数值算法问题。  相似文献   

5.
本文主要研究了水下无穷大双周期加筋微穿孔薄板,在平面声波斜入射下的振动响应和声透射,并提出了一种半解析半数值的计算方法。利用微穿孔板的声阻抗以及薄板表面的振速边界条件,建立了加筋穿孔薄板的振动方程,并根据傅立叶变换及空间波数法将振动位移表达为波数分量的迭加形式。采用数值计算的方法对波数分量进行求解并通过傅里叶逆变换,最终得到了双周期加筋穿孔薄板的振动响应及透射系数。通过与Takahashi穿孔板声压结果的对比,证明了本方法的正确性。在算例中,分析了加强筋及穿孔率对薄板结构的振动和声透射的影响。  相似文献   

6.
7.
吴国荣  钟伟芳 《力学学报》2004,36(1):101-105
应用分形有限元方法结合边界元方法研究了二维含裂纹结构和声耦合问题.采用二级分形有限元方法对含裂纹的弹性结构体进行离散处理,这样可以使得自由度数大大地减少;无限大外域声场的计算使用边界元方法,可以自动满足无穷远辐射条件.数值仿真算例结果表明:结构声耦合系统的共振频率随着裂纹深度的增加而下降;裂纹附近的声场所受的影响较为明显.  相似文献   

8.
Nansha Gao  Hong Hou 《力学快报》2021,11(1):100221
A composite absorber made of a polyurethane sponge and multi-layer micro-perforated plates is presented in this study. Results from an acoustic impedance tube test show that the polyurethane sponge can exhibits higher low-frequency sound absorption in front of the micro-perforated plate, while sound absorption at medium and high-frequencies remains low. The physical mechanism behind this is that the micro-perforated plate increases the denpth cavity. If the polyurethane sponge is placed behind the micro-perforated plate, the amplitude of the original absorption peak will remain constant, but the absorption peaks will shift to lower frequencies. The reason for this phenomenon is that porous materials with low flow resistance can be approximately equivalent to fluid, which not only does not affect the resonance absorption coefficient of micro-perforated plate, but also makes the peaks move to low frequency. This study has the potential applications in the sound absorption design of composite structure.  相似文献   

9.
截锥型薄壁结构声振耦合动力特性分析   总被引:1,自引:0,他引:1  
采用大型通用软件ANSYS,建立截锥型薄壁结构的实体有限元动力学模型,通过与相关实验数据的对比验证了模型合理性。据此,利用无限元模拟自由声场边界,建立声场-截锥型薄壁结构的直接耦合有限元动力学模型。通过数值仿真分析研究了声场中截锥壳结构的振动特性,并讨论了声振动对结构动力特性的影响。研究结果表明:数值仿真结果和截锥壳声振实验数据比较一致。在考虑声场影响后发现:结构位移共振频率值大多有所降低,结构位移共振频率数量显著增多;在低频下,结构位移响应峰值在声场的影响下明显增大;在高频下则明显减小。  相似文献   

10.
航天器噪声试验中结构振动响应预示方法研究   总被引:2,自引:1,他引:1  
李青  邢立坤  柏江  邹元杰 《力学学报》2019,51(2):569-576
航天器在随运载火箭发射过程中要承受严酷的噪声环境,需通过噪声试验来检验航天器承受噪声环境并能正常工作的能力.航天器噪声试验中结构振动的响应特性是结构强度设计应该考虑的因素之一,更是制定器上组件随机振动试验条件的重要依据,因此有必要在航天器研制初期对噪声载荷作用下的结构振动进行响应预示.文章应用商用有限元分析软件MSC.Patran和MSC.Nastran建立了某型号航天器结构舱板的有限元模型,将噪声载荷声压谱转换为脉动压力功率谱密度,进而采用模态法分析结构在噪声载荷作用下的随机振动响应,并将仿真预示结果与试验结果进行对比研究,在仿真分析中考虑阻尼参数模型和流场附加质量效应等因素的影响;通过研究表明:采用阻尼比随频率提高而减小的经验阻尼参数模型可以较好地反映中高频响应特性、得到较为准确的总均方根响应分析结果,进一步采用虚拟质量法考虑流场附加质量效应可以得到较为准确的功率谱密度响应分析结果.文章提出的仿真分析方法建模简便、计算成本低,适用于在航天器研制初期对航天器噪声试验中的结构振动进行响应预示.   相似文献   

11.
Based on the powerful Computational Structural Dynamics method coupled to a Computational Fluid Dynamics approach, the PolyMAX algorithm is used along with the simulation of two-way fluid–structure interactions, as a new virtual testing method for estimating the structural modal parameters and damping ratios of a vibrating structure in either air or some other fluid. The viscosity and motion of fluid are accounted for, as are the shape of the flow passage and a variety of boundary conditions. The method is shown to be able to simulate the vibration of a structure within a real operating environment in which the structure experiences a specified excitation load while the vibration responses of the structure are obtained through a two-way FSI model. Based on the PolyMAX method for estimating the modal parameters, these vibration responses are processed and analyzed. Finally, the dynamic parameters (i.e., the natural frequencies and the damping ratios) of the vibrating structure are identified. For validation, the natural frequencies and damping ratios of two simple submerged cantilever plates were simulated both in air and water and the simulated results were found to agree closely with experimental data.  相似文献   

12.
The complete interaction between the structural domain and the acoustic domain needs to be considered in many engineering problems, especially for the acoustic analysis concerning thin structures immersed in water. This study employs the finite element method to model the structural parts and the fast multipole boundary element method to model the exterior acoustic domain. Discontinuous higher‐order boundary elements are developed for the acoustic domain to achieve higher accuracy in the coupling analysis. Structural–acoustic design sensitivity analysis can provide insights into the effects of design variables on radiated acoustic performance and thus is important to the structural–acoustic design and optimization processes. This study is the first to formulate equations for sound power sensitivity on structural surfaces based on an adjoint operator approach and equations for sound power sensitivity on arbitrary closed surfaces around the radiator based on the direct differentiation approach. The design variables include fluid density, structural density, Poisson's ratio, Young's modulus, and structural shape/size. A numerical example is presented to demonstrate the accuracy and validity of the proposed algorithm. Different types of coupled continuous and discontinuous boundary elements with finite elements are used for the numerical solution, and the performances of the different types of finite element/continuous and discontinuous boundary element coupling are presented and compared in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Fluid–structure interaction in a simplified 2D model of the upper airways is simulated to study flow-induced oscillation of the soft palate in the pharynx. The goal of our research has been a better understanding of the mechanisms of the Obstructive Sleep Apnea Syndrome and snoring by taking into account compressible viscous flow. The inspiratory airflow is described by the 2D compressible Navier–Stokes equations, and the soft palate is modeled as a flexible plate by the linearized Euler–Bernoulli thin beam theory. Fluid–structure interaction is handled by the arbitrary Lagrangian–Eulerian formulation. The fluid flow is computed by utilizing 4th order accurate summation by parts difference operators and the 4th order accurate classical Runge–Kutta method which lead to very accurate simulation results. The motion of the cantilevered plate is solved numerically by employing the Newmark time integration method. The numerical schemes for the structure are verified by comparing the computed frequencies of plate oscillation with the associated second mode eigenfrequency in vacuum. Vortex dynamics is assessed for the coupled fluid–structure system when both airways are open and when one airway is closed. The effect of mass ratio, rigidity and damping coefficient of the plate on the oscillatory behavior is investigated. An acoustic analysis is carried out to characterize the acoustic wave propagation induced by the plate oscillation. It is observed that the acoustic wave corresponding to the quarter wave mode along the length of the duct is the dominant frequency. However, the frequency of the plate oscillation is recognizable in the acoustic pressure when reducing the amplitude of the quarter wave mode.  相似文献   

14.
基于拓扑优化的声学结构材料分布设计   总被引:4,自引:0,他引:4  
本文针对结构的声学设计问题进行研究,通过优化两种不同的材料在结构设计域内的拓扑分 布来最小化谐振结构所产生的声场中指定参考面/参考域内的声压。在研究中假定结构为线弹性小变 形结构,材料阻尼为Rayleigh阻尼,声学介质为无粘、可压缩、小扰动流体。对结构响应采用有限 元格式进行计算,对声场采用基于Helmholtz积分的边界元格式进行计算,由于声场在无穷远自由边 界的无反射条件在边界积分中能自动得到满足,该格式特别适合于具有开放边界的声场计算。建立 了结构有限元-声场边界元格式的耦合系统拓扑优化模型,导出了耦合系统敏感度分析的一般格式及 伴随格式。数值算例验证了所提出的结构-声学耦合系统优化方法的有效性和可靠性,并揭示了基于 声学准则的拓扑优化结果的有关特性 关键词边界积分,结构声学耦合系统,拓扑优化,敏感度分析,伴随方法  相似文献   

15.
In this paper, the mechanism causing self-excited vibration of a piping system is determined using a dynamic model which couples the hydraulics of a piping system with the structural motion of an air-operated, plug-type automatic control valve. In the dynamic model developed, the structural system consists of a valve spring–mass system, while the fluid system consists of a pump, upstream piping, control valve and downstream piping. The coupling between the structural and the fluid systems at the control valve is obtained by making the fluid flow coefficient at the control valve to be a function of valve plug displacement, and by making the valve plug displacement to be a function of fluid pressure and velocity. The dynamic model presented in this paper, for the first time, considers compressibility of the fluid in both the upstream and downstream piping. The dynamic model presented was benchmarked against in situ measurements. The data used for the benchmarking are provided in the paper. A review of the numerical results obtained indicates that the self-excited vibration occurs due to the coincidence of water hammer, acoustic feedback in the downstream piping, high acoustic resistance at the control valve, and negative hydraulic stiffness at the control valve.  相似文献   

16.
17.
18.
A mathematical method is proposed to study fluid-coupled vibration of axisymmetric plate structures with asymmetries due to either imperfection or practical reasons, e.g. the weight reduction of structure, natural frequency shifting, and accessibility. The suggested approach makes use of the separation of variables to determine general solutions of the partial differential equation of the plate transverse displacement, whilst defining multiple polar coordinate systems, each of which offers its own formulation of the plate deformation with respect to its coordinate system. Moreover, closed-form geometric equations and the chain rule for determining derivatives are implemented to move from one coordinate system to the other in order to satisfy boundary conditions. The mode shapes of the vibrating plate in the dry condition are determined and in turn used in the Rayleigh–Ritz method to characterize vibrational properties of the fluid-coupled plate structure. While implementing such an energy method, the fluid motion is formulated employing the velocity potential and solved using the separation of variables. Fluid–structure interaction is also taken into account satisfying the compatibility condition on the fluid–plate​ interface. The developed methodology to predict natural frequencies has been validated by comparison with results obtained by a commercial finite element program. It is also found that the eccentricity tends to reduce natural frequencies of the fluid-coupled system for the lower serial mode, but increases them for the higher serial modes regardless of the presence of liquid.  相似文献   

19.
随机参数连续体结构的动力学拓扑优化   总被引:2,自引:0,他引:2  
崔明涛  陈建军  姜培刚 《应用力学学报》2005,22(2):237-242,i008
构造了基于概率的连续体结构动力特性拓扑优化设计数学模型,以结构的形状拓扑信息为设计变量,结构总重量极小化为目标函数,满足结构多阶固有频率约束的可靠性要求为约束条件。利用分布函数法对模型中的可靠性约束进行了等价化处理。采用了渐进结构优化(ESO)的求解策略与方法。通过算例验证了文中所提出的设计模型及求解策略与方法的合理性和有效性。  相似文献   

20.
An efficient approach for acoustic topology optimization to minimize the radiated sound power from a vibrating structure is described. The topology optimization is implemented by modifying the local stiffness at discrete locations on the surface of the structure. The radiated sound power level from the structure is directly chosen as the objective function to be minimized. A sensitivity analysis is then implemented to further optimize the layout of the locations of the modified local stiffness. To speed up the computational process, the radiated sound power is computed based on mapped acoustic radiation modes. To demonstrate the acoustic topology optimization using mapped acoustic radiation modes, the radiated sound power of a compressor housing is examined. Based on results from the numerical model, the local stiffness of a compressor housing was experimentally modified. Good agreement in sound power reduction obtained both numerically and experimentally was observed for the overall trend for the sound power levels as a function of one-third octave frequency bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号