首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinematics of generalized continua is investigated and key points concerning the definition of overall tangent strain measure are put into evidence. It is shown that classical measures adopted in the literature for micromorphic continua do not obey a constraint qualification requirement, to be fulfilled for well-posedness in optimization theory, and are therefore termed redundant. Redundancy of continua with latent microstructure and of constrained Cosserat continua is also assessed. A simplest, non-redundant, kinematic model of micromorphic continua, is proposed by dropping the microcurvature field. The equilibrium conditions and the related variational linear elastostatic problem are formulated and briefly discussed. The simplest model involves a reduced number of state variables and of elastic constitutive coefficients, when compared with other models of micromorphic continua, being still capable of enriching the Cauchy continuum model in a significant way.  相似文献   

2.
3.
Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier–Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.  相似文献   

4.
The particle dynamics in an annular shear granular flow is studied using the discrete element method, and the influences of packing fraction, shear rate and friction coefficient are analyzed. We demonstrate the existence of a critical packing fraction exists in the shear granular flow. When the packing fraction is lower than this critical value, the mean tangential velocity profile exhibits a rate-independent feature. However, when the packing fraction exceeds this critical value, the tangential velocity profile becomes rate-dependent and varies gradually from linear to nonlinear with increasing shear rate. Furthermore, we find a continuous transition from the unjammed state to the jammed state in a shear granular flow as the packing fraction increases. In this transforming process, the force distribution varies distinctly and the contact force network also exhibits different features.  相似文献   

5.
6.
This work is devoted to modeling the evolution of the homogenized solute diffusion coefficient within unsaturated granular materials by means of micromechanics approach. On the basis of its distinct role in solute diffusion, the liquid water within unsaturated granular materials is distinguished into four types, namely intergranular layer (interconnected capillary water), isolated capillary water, wetting layer and water film. Application on two sands shows the capability of the model to accurately reproduce the experimental results. When saturation degree is higher than the residual saturation degree Srr, the evolution of homogenized solute diffusion coefficient with respect to the saturation degree depends significantly on the connectivity of the capillary water. Below Srr, depending on the connectivity of the wetting layer, the homogenized solute diffusion coefficient within unsaturated sands decreases by 2–6 orders of magnitude with respect to that in bulk liquid water. The upper bound of the solute diffusion coefficient contributed by the water films is 4–6 orders of magnitude lower than that in bulk liquid water.  相似文献   

7.
In this paper we propose to construct a mean stress tensor for a granular medium, valid in static and in dynamics, which takes into account the contact reactions and the body forces acting at the grain level. A simple analytical example shows that taking account of inertia forces is essential to insure the symmetry of the mean stress tensor in dynamics. Finally, numerical simulations illustrating this definition of the mean stress tensor are presented for a granular medium ensiled.  相似文献   

8.
The interaction between granular matter and the elastic body is a complex issue due to the complex properties of granular matter. An experiment involving a sinusoidally excited plate buried in glass bead particles contained in a box is conducted. The motion behavior of the plate is observed and recorded by the strain gauge. The amplitude–frequency and phase–frequency curves are recorded to study the natural property of the plate in granular matter. In this experiment, jump phenomena are found in both the amplitude–frequency and phase–frequency planes in circumstances with smaller particle sizes, lower buried depths, and larger amplitudes of the excitation force. Otherwise, the period-doubling bifurcation, especially 3T, is found with the increase in the excitation force. These bifurcations usually occur in specific buried depth and excitation frequency band and require smaller particle sizes. The experiments with random-shaped particles exhibit no-jump phenomenon, but period-doubling bifurcation and chaos. These phenomena are sensitive to parameters and closely related to the varying process of the excitation frequency and force. Reasonable mechanisms are summarized qualitatively through some of our recent researches in this paper.  相似文献   

9.
In this paper, following Noether’s theorem we investigate the Lie point symmetries of linear micromorphic elastodynamics (linear elastodynamics with microstructure). Conservation and balance laws of linear, micromorphic elastodynamics are derived. We generalize the J, L and M integrals for this theory. In addition, we give the Eshelby stress tensor, pseudomomentum vector, field intensity vector, Hamiltonian, angular momentum tensor and scaling flux generalized to micromorphic elastodynamics.   相似文献   

10.
Granular material discharge from a flat-bottomed silo has been simulated by using continuum modeling and a three-dimensional discrete-element method (DEM). The predictive abilities of three commonly used frictional viscosity models (Schaeffer, S–S, and μ(I)) were evaluated by comparing them with the DEM data. The funnel-flow pattern (type C) and the semi-mass-flow pattern (type B) that was predicted by DEM simulations can be represented when the Schaeffer or μ(I) model is used, whereas the S–S model gives a consistent type-B flow pattern. All three models over-estimate the discharge rate compared with the DEM. The profiles of the solids volume fraction and the vertical velocity above the outlet show that the larger discharge rates given by the Schaeffer and μ(I) model result from an over-estimation of volume fraction, whereas the deviation in the S–S model stems from the failure to predict a solid vertical velocity and a volume fraction.  相似文献   

11.
A hybrid experimental-computational study has been conducted in order to determine the propagational characteristics of mechanical waves in granular materials. The experimental investigation has used the method of dynamic photoelasticity to collect photographic data which provide information on the wave speeds, integranular contact loadings, and wave-spreading characteristics. The computational study employed the use of the distinct-element method whereby the motion of each granule in the material is modeled by rigid-body dynamics assuming each particle interaction has particular frictionless stiffness and damping forces. The experimental results provide special dynamic material constants necessary for the computational modeling, and they also provide data for comparison purposes. Results from the experimental and computational studies compare well with each other and indicate that local microstructure plays an important role in the wave propagation through such materials.  相似文献   

12.
We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics(SPH) solutions of a set of continuum equations.This simulation was performed to test the viability of SPH in solving the equations for the solid phase of the two-fluid model associated with fluidization.We found that SPH requires the handling of fewer particles in simulating the collective behavior of rapid granular flow,thereby bolstering expectations of solving the equations for the solid phase in the two-fluid modeling of fluidization.Further work is needed to investigate the effect of terms describing pressure and viscous stress of solids on stability in simulations.  相似文献   

13.
Hierarchical modeling in multibody dynamics   总被引:1,自引:0,他引:1  
Summary In this paper a hierarchical approach using several mechanical models with different complexities and modeling depths to describe a single engineering system is presented. The mechanical models are derived from (but not limited to) multibody dynamics. The computer power available and improvements in theoretical understanding allow today not only to perform analyses but also to attack the problem of multimodel synthesis. Therefore, hierarchical modeling is used as a basis to analyze simultaneously models with different complexities and different excitations, and to optimize the performance with the most appropriate model for an investigated mechanical effect. Since only one single engineering system is investigated, its different models must be coupled by shared parameters, and the different criteria have to be combined with multicriteria optimization algorithms in order to obtain a single feasible design. An example taken from vehicle dynamics demonstrates the application of the approach. Received 14 January 1997; accepted for publication 11 September 1997  相似文献   

14.
The mechanical behavior of the porous and granular class of materials is modelled by means of endochronic plasticity. Special attention is given to the coupled volumetric-deviatoric behavior including volumetric deformation enhanced by shear loading and the enhancement of deviatoric deformation due to the application of hydrostatic loads. The theory is applied to describe a set of results for concrete available in the literature. This application has demonstrated a reasonably wide range of applicability for the model.  相似文献   

15.
Despite advancements in computational resources, the discrete element method (DEM) still requires considerable computational time to solve detailed problems, especially when it comes to the large-scale models. In addition to the geometry scale of the problem, the particle shape has a dramatic effect on the computational cost of DEM. Therefore, many studies have been performed with simplified spherical particles or clumps. Particle scaling is an approach to increase the particle size to reduce the number of particles in the DEM. Although several particle scaling methods have been introduced, there are still some disagreements regarding their applicability to certain aspects of problems. In this study, the effect of particle scalping on the shear behavior of granular material is explored. Real granular particles were scanned and imported as polygonal particles in the direct shear test. The effect of particle size distribution, particle angularity, and the amount of scalping were investigated. The results show that particle scalping can simulate the correct shear behavior of the model with significant improvement in computational time. Also, the accuracy of the scalping method depends on the particle angularity and particle size range.  相似文献   

16.
In the present article, we study the effect of inherent anisotropy, i.e., initial bedding angle of particles and associated voids on macroscopic mechanical behavior of granular materials, by numerical simulation of several biaxial compression tests using the discrete element method (DEM). Particle shape is considered to be irregular convex-polygonal. The effect of inherent anisotropy is investigated by following the evolution of mobilized shear strength and volume change during loading. As experimental tests have already shown, numerical simulations also indicate that initial anisotropic condition has a great influence on the strength and deformational behavior of granular assemblies. Comparison of simulations with tests using oval particles, shows that angularity influences both the mobilized shear strength and the volume change regime, which originates from the interlocking resistance between particles.  相似文献   

17.
Direct modeling for computational fluid dynamics   总被引:1,自引:1,他引:0  
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes(NS) equations.The current computational fluid dynamics(CFD) focuses on the numerical solution of partial differential equations(PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools.Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales.Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process.With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.  相似文献   

18.
Three-dimensional discrete element method (DEM) simulations were developed for the Mars Exploration Rover (MER) mission to investigate: (1) rover wheel interactions with martian regolith; and (2) regolith deformation in a geotechnical triaxial strength cell (GTSC). These DEM models were developed to improve interpretations of laboratory and in situ rover data, and can simulate complicated regolith conditions. A DEM simulation was created of a laboratory experiment that involved a MER wheel digging into lunar regolith simulant. Sinkage and torques measured in the experiment were compared with those predicted numerically using simulated particles of increasing shape complexity (spheres, ellipsoids, and poly-ellipsoids). GTSC simulations, using the same model regolith used in the MER simulations, indicate a peak friction angle of approximately 37–38° compared to internal friction angles of 36.5–37.7° determined from the wheel digging experiments. Density of the DEM regolith was 1820 kg/m3 compared to 1660 kg/m3 for the lunar simulant used in the wheel digging experiment indicating that the number of grain contacts and grain contact resistance determined bulk strength in the DEM simulations, not density. An improved correspondence of DEM and actual test regolith densities is needed to simulate the evolution of regolith properties as density changes.  相似文献   

19.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

20.
Unsteady aerodynamics modeling for flight dynamics application   总被引:2,自引:0,他引:2  
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号