首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In some problems concerning cylindrically and spherically symmetric unsteady ideal (inviscid and nonheat-conducting) gas flows at the axis and center of symmetry (hereafter, at the center of symmetry), the gas density vanishes and the speed of sound becomes infinite starting at some time. This situation occurs in the problem of a shock wave reflecting from the center of symmetry. For an ideal gas with constant heat capacities and their ratio γ (adiabatic exponent), the solution of this problem near the reflection point is self-similar with a self-similarity exponent determined in the course of the solution construction. Assuming that γ on the reflected shock wave decreases, if this decrease exceeds a threshold value, the flow changes substantially. Assuming that the type of the solution remains unchanged for such γ, self-similarity is preserved if a piston starts expanding from the center of symmetry at the reflection time preceded by a finite-intensity reflected shock wave propagating at the speed of sound. To answer some questions arising in this formulation, specifically, to find the solution in the absence of the piston, the evolution of a close-to-self-similar solution calculated by the method of characteristics is traced. The required modification of the method of characteristics and the results obtained with it are described. The numerical results reveal a number of unexpected features. As a result, new self-similar solutions are constructed in which two (rather than one) shock waves reflect from the center of symmetry in the absence of the piston.  相似文献   

2.
The solutions to the Riemann problem for a nonsymmetric system of Keyfitz-Kranzer type are constructed explicitly when the initial data are located in the quarter phase plane. In particular, some singular hyperbolic waves are discovered when one of the Riemann initial data is located on the boundary of the quarter phase plane, such as the delta shock wave and some composite waves in which the contact discontinuity coincides with the shock wave or the wave back of rarefaction wave. The double Riemann problem for this system with three piecewise constant states is also considered when the delta shock wave is involved. Furthermore, the global solutions to the double Riemann problem are constructed through studying the interaction between the delta shock wave and the other elementary waves by using the method of characteristics. Some interesting nonlinear phenomena are discovered during the process of constructing solutions; for example, a delta shock wave is decomposed into a delta contact discontinuity and a shock wave.  相似文献   

3.
The supersonic flow past a concave double wedge is discussed. Because of the interaction between the outer shock attached at the head of the wedge and the inner shock issued from the concave corner, there is a rarefaction wave issued from the intersection of the outer and inner shock. The rarefaction wave is reflected by the outer shock and the wedge infinitely, while the outer shock is also bent due to interaction. The global existence of the solution is proved under the assumptions that the outer shock is weak and the difference of two slopes of the double wedge is small. Meanwhile, a rigorous proof of the asymptotic behavior of the global solution is given. The property is often ap plied to numerical computation. Project partially supported by the National Natural Science Foundation of China and Doctoral Programme Foundation of IHEC.  相似文献   

4.
We study a two dimensional Riemann problem for the self-similar nonlinear wave system which gives rise to an interaction of a transonic shock and a rarefaction wave. The interesting feature of this problem is that the governing equation changes its type from supersonic in the far field to subsonic near the origin. The subsonic region is then bounded above by the sonic line (degenerate) and below by the transonic shock (free boundary). Furthermore due to the rarefaction wave in the downstream, which interacts with the transonic shock, the problem becomes inhomogeneous and degenerate. We establish the existence result of the global solution to this configuration, and present analysis to understand the solution structure of this problem.  相似文献   

5.
Tong Li 《偏微分方程通讯》2013,38(11-12):2087-2105
We establish the existence of viscous profile of an undriven divergent detonation wave. The structure of the wave is a viscous shock followed by a reaction zone containing a sonic point. So the divergent detonation wave profile is a transonic profile.

We further establish the existence of classical global solutions of the Cauchy problem. The proof consists of establishing a priori estimates for the solution by a maximum principle and using Hölder estimates for solutions of parabolic equations. Finally, the nonlinear stability of the viscous transonic profile is established. The main reason for the stability is that there is a damping term due to the divergent nature of the problem.  相似文献   

6.
All possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around blunt bodies in the two-layer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, Re, from low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. Together with the well-known models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows from the Navier-Stokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing inertial and pressure forces and boundary conditions on the unspecified free boundary (the shock wave) is found at Reynolds numbers, and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (k/Re)1/2 → 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the drag is thereby rigorously obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed by the thickness of the shock layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models are written in Dorodnitsyn--Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic and thermal characteristic; in the form of a single dependence on Re over the whole range of its variation from zero to infinity.

An efficient numerical method of global iterations, previously developed for solving viscous shock-layer equations, can be used to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)1/2 → 0 is satisfied in the case of small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the whole of the trajectory for the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere.  相似文献   


7.
The effects of dissociation or ionization of air on the analytical solution for hypersonic flow past a sphere are considered here, under certain assumptions. It has been assumed that the shock wave is in the shape of a sphere, that the density ratio across the shock is constant, that the flow behind the shock is at constant density and that dissociation or ionization only occurs behind the shock wave. Thus the effects of the compressibility of the air, variation of density ratio along the shock, and the department of the shock shape from being circular are not taken into account. Here the velocity, pressure, temperature, pressure coefficient and vorticity, etc., at any point between the shock and the surface of the sphere in the presence of dissociation or ionization are obtained. In addition, shock detachment distance, drag coefficient, stagnation point velocity gradient and sonic points on the shock and the surface have also been obtained. The results have been compared with the corresponding results obtained in the case when dissociation or ionization does not occur behind the shock.  相似文献   

8.
The numerical solution of a kinetic equation for a diatomic gas (nitrogen) is used to study two-dimensional unsteady gas flows in a plane microchannel caused by discontinuous in the initial distributions of macroscopic gas parameters. The plane discontinuity fronts are perpendicular to the walls of the channel. The arising flows are model ones for gas flows in a shock tube and a microchannel. The reflection of an incident shock wave from a flat end face is studied. It is found that the gas piles up at the cold wall, which slows down the shock wave detachment. The numerical results are in qualitative agreement with experimental data.  相似文献   

9.
一类非线性奇摄动问题激波位置的转移   总被引:1,自引:1,他引:0  
用一个特殊而简单的方法来讨论一类非线性奇摄动问题的激波位置.得出了在一定的情况下,当边界条件作微小的变化时,激波的位置将作较大的偏移,甚至由内层转到边界层.  相似文献   

10.
The shock wave in a viscous gas which is treated as a strong discontinuity is unstable against small perturbations [A.M. Blokhin, On stability of shock waves in a compressible viscous gas, Matematiche LVII (I) (2002) 3-19]. We suggest such additional boundary conditions that a modified (with account to these conditions) linear initial-boundary value problem on stability of the shock wave does not admit Hadamard-type ill-posedness examples.  相似文献   

11.
The theory of high-frequency waves has been used to calculate first and second-order asymptotic solutions for the propagation of non-linear waves in a cylindrical symmetric flow of an electron plasma. The behaviour of acceleration waves and weak shock waves has been analysed through these solutions and Whitham's rule for a weak shock wave on any wavelet has been confirmed through the first-order solution. The appearance of a weak shock wave on any wavelet has been determined and its strength, the location, and the speed of propagation have been found from the asymptotic solution presented in this paper. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

12.
Unsteady rarefied gas flows in narrow channels accompanied by shock wave formation and propagation were studied by solving the Boltzmann kinetic equation. The formation of a shock wave from an initial discontinuity of gas parameters, its propagation, damping, and reflection from the channel end face were analyzed. The Boltzmann equation was solved using finite differences. The collision integral was calculated on a fixed velocity grid by a conservative projection method. A detector of shock wave position was developed to keep track of the wave front. Parallel computations were implemented on a cluster of computers with the use of the MPI technology. Plots of shock wave damping and detailed flow fields are presented.  相似文献   

13.
激波在异种气体中传播及诱导的剪切混合研究   总被引:1,自引:0,他引:1  
利用二阶迎风TVD格式求解多组分,层流全N-S方程,针对直通道和突扩直通道,研究了马赫数为2和4的激波在H2和空气界面上的传播及诱导的燃料剪切混合,计算结果表明:(1)直通道中,剪切层中的激波阵面要发生畸变,存在对混合起主要作用的卷吸涡,激波马赫数不同,卷吸涡结构和横向混合的尺寸也不同,激波马赫数低,剪切混合效果好,(2)在突扩直通道中,马赫数为2和4的激波在H2中产生不同强度激波,在剪切层中都能产生顺时针,尺度较大的卷吸涡,后台阶增强了剪切层的混合。  相似文献   

14.
In this paper, we are concerned with the global existence and stability of a steady transonic conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Theoretically, as indicated in [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948], it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the vertex of the sharp cone in terms of the different pressure states at infinity behind the shock surface, which correspond to the supersonic shock and the transonic shock respectively. In the references [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47-84; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Polytropic case, preprint, 2006; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Isothermal case, Pacific J. Math. 233 (2) (2007) 257-289] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101-132], the authors have established the global existence and stability of a supersonic shock for the perturbed hypersonic incoming flow past a sharp cone when the pressure at infinity is appropriately smaller than that of the incoming flow. At present, for the supersonic symmetric incoming flow, we will study the global transonic shock problem when the pressure at infinity is appropriately large.  相似文献   

15.
We study the classical problem of a supersonic stationary flow of a nonviscous nonheat-conducting gas in local thermodynamic equilibrium past an infinite plane wedge. Under the Lopatinski? condition on the shock wave (neutral stability), we prove the well-posedness of the linearized mixed problem (the main solution is a weak shock wave), obtain a representation of the classical solution, where, in this case (in contrast to the case of the uniform Lopatinski? condition—an absolutely stable shock wave), plane waves additionally appear in the representation. If the initial data have compact support, the solution reaches the given regime in infinite time.  相似文献   

16.
在超声速或高超声速绕流中,一种很严重的脉动压力环境是由激波边界层相互作用引起的激波振荡.这种高强度的振荡激波可能诱发结构共振.因这一现象非常复杂,已发表的文章都采用经验或半经验方法.本文首次从基本流体动力学方程出发,给出了由湍流剪切层引起的激波振荡频率的理论解,得到了振荡频率随气流Mach数M和压缩折转角θ的变化规律,计算结果与实验值是相符的.本文为激波振荡导致的气动弹性问题提供了一种有价值的理论方法.  相似文献   

17.
T. Khmel 《PAMM》2002,1(1):361-362
The study of detonation ability of reactive particle gas mixtures is necessary to prevent industrial explosions in industries where dispersed powders are used. The present paper focuses on numerical simulation of the shock wave interaction with semiinfinite aluminum dust cloud, which is situated inside a plane channel. The cloud fills entirely or partly the channel cross‐section and has initially a rectangular shape. The scenarios of detonation initiation in the cloud are determined depending on the incident shock wave amplitude values. The processes of transformation and spreading of finite width clouds under weak incident shock wave action (when the particles do not ignite) are investigated. The types of an oblique shock wave reflection from the plane of symmetry in the cloud are analyzed. The processes of particle ignition and detonation structure formation at strong incident shock wave action are investigated. Nonstationary periodic fuctuations take place in the detonation flow due to transversal wave effect. Nevertheless the detonation structure established propagates in quasistationary regime. If the incident shock wave is attenuated with a rarefaction wave then the detonation formation fails at clouds of insufficient width.  相似文献   

18.
The problem of the rapid cylindrically and spherically symmetric strong compression of a perfect (non-viscous and non-heat-conducting) gas is solved. The term “rapid” denotes that the compression time is much less than the run time of a sound wave across the initial cylindrical or spherical volume, while the term “strong” in this case means the simultaneous attainment of as large a density and temperature as desired. By definition, rapid compression must begin in a strong shock wave, which propagates to the axis or centre of symmetry. When the shock wave approaches the centre of symmetry this flow is described by the self-similar Guderley equation with an unbounded rise in temperature, pressure and velocity and a finite increase in the density at the centre of symmetry both behind the arriving and behind the reflected shock waves. To obtain as high an increase in the density as desired one must add on a centred compression wave with focus at the centre of symmetry to the overtaking shock wave at the instant it arrives at the centre of symmetry C-characteristic. Outside a small neighbourhood of the focus one can calculate, by the method of characteristics, the centred wave and the trajectory of the piston which produces it. As for any centred wave, this calculation must be carried out from the centre of symmetry. Since some of the parameters at the focus (certainly the pressure, temperature and velocity of the gas) are unbounded, it is necessary to preface the calculation by the method of characteristics by constructing an analytic solution which holds in a small neighbourhood of the centre of symmetry. Below, after constructing the required solution, the centred waves corresponding to it and the trajectories of the piston producing them are calculated.  相似文献   

19.
We introduce a simple model of two conservation laws which is strictly hyperbolic except for a degenerate parabolic line in the state space. Besides classical shock waves, it also exhibits overcompressive, marginal overcompressive, and marginal undercompressive shock waves. Our purpose is to study the behavior of the corresponding viscous waves, in particular the manner in which these waves are stable. There are several basic differences between classical shock waves and other types of shock waves. A perturbation of an overcompressive shock wave gives rise to a new wave. Monotone marginal overcompressive waves behave distinctly from the nonmonotone ones. Analytical techniques used in our study include characteristic-energy and weighted-energy methods, and nonlinear superposition through time-invariants. Although we carry out our analysis for a simple model, the general phenomena would hold for overcompressive waves which occur in other physical models.  相似文献   

20.
In this paper, the reflection phenomenon of a vapor shock front (both sides of the front are in the vapor phase) in a van der Waals fluid is considered. Both the 1-dimensional case and the multidimensional case are investigated. The authors find that under certain conditions, the reflected wave can be a single shock, or a single subsonic phase boundary, or one weak shock together with one subsonic phase boundary, which depends on the strength of the incident shock. This is different from the known result for the reflection of shock fronts in a gas dynamical system due to Chen in 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号