首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a new kind of pile structure, namely linked periodic pile rows, is proposed for the vibration isolation facility. The proposed linked periodic pile rows consist of pile rows with pile tops rigidly linked by beams. To investigate the vibration isolation effect of linked pile rows, a numerical model is developed for the simulation of the dynamic response of linked pile rows. To address the pile–soil interaction problem, based on the sequence Fourier transform method, a wavenumber domain boundary element method is developed for the pile–soil system. The beams linking the pile tops are dealt with by the bar and beam vibrational theories. By using the coupling conditions between the pile tops and linking beams as well as the periodicity condition for the beam–pile–soil system, the complementary equations for the system are established. With the proposed model, the vibration isolation effects of the linked pile rows are investigated and compared with those of free pile rows. The comparison indicates that linked pile rows usually yield a better isolation vibration effect than free pile rows. Hence, linked pile rows are a more effective wave barrier for vibration isolation than free pile rows.  相似文献   

2.
采用积分变换和Muki的方法求解了层状地基中单桩的扭转振动问题.在分析过程中,首先对基本控制方程进行Hankel变换,建立了单层地基的初参数解答和刚度矩阵,得到层状地基的递推矩阵;然后利用递推矩阵、边界条件和桩-土变形协调条件建立了层状地基中单桩扭转振动问题的基本积分方程并进行数值求解.文末数值算例给出了退化的层状地基中刚性单桩的扭转变形,其结果与已有经典解答吻合良好.同时,并研究了两层地基中单桩的扭转动力响应,分析了桩-土参数对动力响应的影响,所得结论对工程实践和桩基扭转波检测有一定的指导意义.  相似文献   

3.
The lattice gas automaton (LGA) model proposed in the previous paper is applied to the problem of simulating dispersion and mixing in heterogeneous porous media. We demonstrate here that tracer breakthrough profiles and longitudinal dispersion coefficients can be computed for heterogeneous porous media.  相似文献   

4.
The aim of this study is to present a framework for the modeling of damage in continuous unsaturated porous geomaterials. The damage variable is a second-order tensor. The model is formulated in net stress and suction independent state variables. Correspondingly, the strain tensor is split into two independent thermodynamic strain components. The proposed framework mixes micro-mechanical and phenomenological approaches. On the one hand, the effective stress concept of Continuum Damage Mechanics is used in order to compute the damaged rigidities. On the other hand, the concept of equivalent mechanical state is introduced in order to get a simple phenomenological formulation of the behavior laws. Cracking effects are also taken into account in the fluid transfer laws. To cite this article: C. Arson, B. Gatmiri, C. R. Mecanique 337 (2009).  相似文献   

5.
A new model for resistance of flow through granular porous media is developed based on the average hydraulic radius model and the contracting–expanding channel model. This model is expressed as a function of tortuosity, porosity, ratio of pore diameter to throat diameter, diameter of particles, and fluid properties. The two empirical constants, 150 and 1.75, in the Ergun equation are replaced by two expressions, which are explicitly related to the pore geometry. Every parameter in the proposed model has clear physical meaning. The proposed model is shown to be more fundamental and reasonable than the Ergum equation. The model predictions are in good agreement with the existing experimental data.  相似文献   

6.
7.
The isolation of the vibration due to harmonic Rayleigh waves using pile rows embedded in a saturated poroelastic half-space is investigated in this study. Based on Biot’s theory and the potential function method, the free field solution for Rayleigh waves along the surface of the poroelastic half-space is derived first. The fundamental solution for a harmonic circular patch load applied in the poroelastic half-space are obtained in terms of Biot’s theory and the integral transform method. Using Muki’s method and the fundamental solution for the circular patch load as well as the Rayleigh waves solution for the poroelastic half-space, the second kind of Fredholm integral equations in the frequency domain for pile rows are derived. Numerical solution of the integral equations yields the dynamic response of the pile–soil system to incident Rayleigh waves. Influences of various parameters on the vibration isolation effect of piles rows are investigated numerically. Numerical results suggest that for the same vibration source, the same pile rows will produce a better vibration isolation effect for the poroelastic medium than for a single phase elastic medium. Also, stiffer piles tend to have better vibration isolation effect than flexible piles. Moreover, the pile length and the spacing between neighboring piles in each pile row have significant influence on the vibration isolation effect of pile rows.  相似文献   

8.
Experiments were run in three linear, homogeneous, nonuniform porous media constructed in lucite columns using spherical glass beads. The columns were also joined end to end to create an in series layered heterogeneous porous media. Each column, all combinations of columns and several permutations were studied with a factorial experimental design to determine the effects of porosity, permeability, velocity, length, and column order upon dispersion. Attempts to predict the heterogeneous results from the homogeneous results were made, and a statistical regression based on the factorial design was calculated. Results showed that no simple averaging procedure accurately predicted the heterogeneous results. The statistical regression showed permeability, velocity, viscosity, length and column order to be significant.  相似文献   

9.
Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function for ring loads. The influence of soil anisotropy on the dynamic behavior of piles is examined through a series of parametric studies  相似文献   

10.
A lattice gas automaton (LGA) model is proposed to simulate fluid flow in heterogeneous porous media. Permeability fields are created by distributing scatterers (solids, grains) within the fluid flow field. These scatterers act as obstacles to flow. The loss in momentum of the fluid is directly related to the permeability of the lattice gas model. It is shown that by varying the probability of occurrence of solid nodes, the permeability of the porous medium can be changed over several orders of magnitude. To simulate fluid flow in heterogeneous permeability fields, isotropic, anisotropic, random, and correlated permeability fields are generated. The lattice gas model developed here is then used to obtain the effective permeability as well as the local fluid flow field. The method presented here can be used to simulate fluid flow in arbitrarily complex heterogeneous porous media.  相似文献   

11.
An approximate model based on the “second-order” nonlinear homogenization method is proposed to estimate the effective behavior of isotropic, viscoplastic, porous materials. The model is constructed in such a way that it reproduces exactly the behavior of a “composite-sphere assemblage” in the limit of hydrostatic loadings, and therefore coincides with the hydrostatic limit of Gurson’s criterion in the special case of ideal plasticity. As a consequence, the new model improves on earlier homogenization estimates, which have been found to be quite accurate for low triaxialities but overly stiff for sufficiently high triaxialities and nonlinearities. Additionally, the estimates delivered by the model exhibit a dependence on the third invariant of the macroscopic stress tensor, which has a nontrivial effect on the effective response of the material at moderate triaxialities. The proposed model is compared with exact results obtained for a special class of porous materials with sequentially laminated microstructures. The agreement is found to be quite good for the entire range of stress triaxialities, and all values of the porosity and nonlinearity considered.  相似文献   

12.
In basin modelling the thermodynamics of a multicomponent multiphase fluid flux are computationally too expensive when derived from an equation of state and the Gibbs equality constraints. In this article we present a novel implicit molar mass formulation technique using binary mixture thermodynamics. The two proposed solution methods, with and without cross derivative terms between components, are based on a preconditioned Newton‐GMRES scheme for each time‐step with analytical computation of the derivatives. These new algorithms reduce significantly the numerical effort for the computation of the molar masses, and we illustrate the behavior of these methods with numerical computations. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   

13.
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.  相似文献   

14.
A hybrid method is presented for the analysis of layers, plates, and multilayered systems consisting of isotropic and linear elastic materials. The problem is formulated for the general case of a multilayered system using a total potential energy formulation. The layerwise laminate theory of Reddy is employed to develop a layerwise, two-dimensional, displacement-based, hybrid boundary element model that assumes piecewise continuous distribution of the displacement components through the system's thickness. A one-dimensional finite element model is used for the analysis of the multilayered system through its thickness, and integral Fourier transforms are used to obtain the exact solution for the in-plane problem. Explicit expressions are obtained for the fundamental solution of a typical infinite layer (element) assuming linear displacement distribution through its thickness. This fundamental solution is given in a closed form in the cartesian space, and it can be applied in the two-dimensional boundary integral equation model to analyze layered structures with finite dimensions. The proposed method provides a simple, efficient, and versatile model for a three-dimensional analysis of thick plates or multilayered systems.  相似文献   

15.
In this contribution, the Desai hierarchical model is extended to the case of 3D elasto-plastic two-phase micropolar continuum. An unconditionally stable implicit Euler backward algorithm for integration of the constitutive relations is developed and presented in detail. The regularizing effect of the introduction of a length parameter to the classical Desai model is demonstrated by means of several case studies of single phase and two-phase porous media.  相似文献   

16.
剧变截面圆管内渗流的数值计算方法   总被引:1,自引:0,他引:1  
对于剧变截面圆管的渗流问题写出不可压缩渗流的基本方程组,对直接求解原始变量(速度和压力)的数值计算方法作出改进。先由非主流方向的运动方程计算压力,后由主流方向的运动方程计算主流方向的速度分量,再由连续性方程计算非主流方向的速度分量。这样可以避免在一般的求解原始变量方法中由连续性方程计算压力时出现的困难和麻烦。根据本方法和剧变截面圆管的特点,采用半交错不等距非正交贴体混合网格系。本文详细写出差分方程和迭代计算公式,对剧变截面圆管内的渗流算例进行数值计算。本方法的优点是简单和实用,在工程上具有较大的应用价值。  相似文献   

17.
This paper is devoted to the modelling of isothermal low Reynolds and Mach numbers transient compressible flow through porous media. Traditionally, this type of flow at the macroscopic level is described by the classical Darcy's law combined with a mass balance that includes the transient term. This model is called the ‘classic model’. The aim of this paper is to explore the validity of this classic model. To this end, the flow of an ideal gas is considered within two‐dimensional model porous media. The flow is due to the imposed pressure variations at the outlet of the fluid domain. At the microscopic level, the flow is computed by solving the full compressible Navier–Stokes equations in two dimensions. Special attention is given to the outlet boundary conditions. The analysis is based on the comparison between the macroscopic data, obtained on the one hand by spatially averaging the microscopic results, and on the other hand by solving the problem directly at the macroscopic level. Situations for which a good agreement is found between the two series of data and situations for which discrepancies are observed are exhibited. These various behaviours are discussed in terms of the various time scales controlling the flow and are explained by analysing the flow structure at pore level. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Many natural rock systems contain small patches of different permeability which affect the flow of fluids through them. As these heterogeneities become smaller and more numerous, they become harder to model numerically. We consider how to reduce the computational effort required in simulations by incorporating their effects in the boundary conditions at the edges of each grid block. This is in contrast with current methods which involve often arbitrary changes in the fluid properties. The method is restricted to the case of widely-spaced patches, which simplifies interaction effects. The system then reduces to an array of dipoles, and two averaging methods are proposed for finite grid blocks. Several infinite systems, including vertical and horizontal bands, are also considered as further approximations. There is a great wealth of existing results from different fields which lead to identical mathematical problems and which can be used in these cases. Finally, we consider how to use these techniques when the precise configuration of the grid block is not known, but only its statistical properties. This can lead to results which are very different from the deterministic case.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号