首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The temperature dependence of the standard molar heat capacity Cp, moof samples of crystalline tetraphenylphosphonium perchlorate and tetraphenylarsonium perchlorate was measured in an adiabatic low-pressure calorimeter between T =  4.8 K and T =  340 K and from T =  5.8 K to T =  340 K, respectively, mostly to within a precision of 0.2 per cent. For tetraphenylphosphonium perchlorate, an anomalous change of the heat capacity in the range T =  125 K to T =  185 K, probably arising from the excitation of hindered rotations of atomic groups, was found and its thermodynamic characteristics were determined. No such anomaly was observed for tetraphenylarsonium perchlorate. The data obtained were used to calculate the thermodynamic functions Cp, mo(T) / R, Δ0THmo / R·K, Δ0TSmo / R, and Φmo = Δ0TSmo  Δ0THmo / T(where R is the universal gas constant) of the compounds between T   0 and T =  340 K.  相似文献   

4.
The temperature dependences of the heat capacity (C p°) of carbynoid structures prepared by alkaline dehydrochlorination of poly(vinylidene chloride) and 1,1,2- and 1,2,3-polytrichlorobutadienes were studied by adiabatic vacuum calorimetry between 5 and 340 K with an accuracy of 0.2%. The low-temperature relaxation transitions and abnormal patterns of the C p° vs. T dependences were identified and characterized. The experimental results were used to calculate the thermodynamic functions C p°(T), H°(T) – H°(0), S°(T) – S°(0), and G°(T) – H°(0) for 0—340 K. These data were compared with the corresponding data for carbyne produced by oxidative dehydropolycondensation of acetylene, which is a mixture of amorphous - and -forms with a minor impurity of crystals of both forms.  相似文献   

5.
6.
The temperature dependence of the heat capacity of crystalline barium zirconium phosphate C p o  = f(T) was measured over the temperature range 6–612 K. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H°(T) ? H°(0), S°(T), G°(T) ? H°(0) over the temperature range from T → 0 to 610 K and standard entropy of formation at 298.15 K. The data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity were used to determine the fractal dimension of Ba0.5Zr2(PO4)3. Conclusions concerning the topology of the structure of phosphate were drawn. Thermodynamic properties of M0.5Zr2(PO4)3 (M = Ca, Sr, Ba) were compared.  相似文献   

7.
The energies of combustion of cellulose samples with different supramolecular structures were determined, and the enthalpies of formation of these substances were calculated. Reliable values of the heat capacity were obtained.  相似文献   

8.
The temperature dependences of the heat capacities of 5-vinyltetrazole and poly-5-vinyltetrazole were measured by adiabatic vacuum calorimetry over the temperature range 6-(350–370) K with errors of ~0.2%. The results were used to calculate the thermodynamic functions of the compounds, C p ° , H °(T) - H °(0), S °(T), and G °(T) - H °(0), over the temperature range from T → 0 to 350–370 K. The energy of combustion of 5-vinyltetrazole and poly-5-vinyltetrazole was measured in an isothermic-shell static bomb calorimeter. The standard enthalpies of combustion Δ c H ° and thermodynamic characteristics of formation Δf H °, Δf S °, and Δf G ° at 298.15 K and p = 0.1 MPa were calculated. The results were used to determine the thermodynamic characteristics of polymerization of 5-vinyltetrazole over the temperature range from T → 0 to 350 K.  相似文献   

9.
10.
The heat capacity of bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper, (triethylarsine)bis(3,6-di-tert-butyl-o-benzosemiquinonato)nickel, and (triphenylphosphine)bis(3,6-di-tert-butyl-o-benzosemiquinonato)cobalt was determined in the range of 0 to 350 K by precision adiabatic vacuum calorimetry. The temperature dependences of magnetic moments were studied for the last two complexes. The G-transition in nickel complex, which is presumably caused by a loosening of the molecular degrees of freedom, was determined. The standard thermodynamic functions of complexes were calculated according to the obtained data: C p , H○(T)-H○(0), S○(T), and G○(T)-H○(0) for the range of T → 0 to 350 K. It was concluded that our analysis of low-temperature heat capacity based on the Debye theory of the heat capacity of solids and the multifractal model confirms the chain-layer topologies of the structures of the investigated complexes.  相似文献   

11.
12.
13.
The temperature dependence of the heat capacity C p o= f(T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6–350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C p o(T), H o(T)-H o(0), S o(T)-S o(0), and G o(T)-H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.  相似文献   

14.
15.
16.
A flow mixing calorimeter, followed by a vibrating tube densimeter, has been used to measure excess molar enthalpies HmEand excess molar volumesVmE of {xCO2 +  (1   x)SF6}. Measurements over a range of mole fraction x have been made at the temperatures T =  302.15 K and T =  305.65 K at the pressures (3.76, 5.20, 6.20, and 7.38) MPa. The lowest pressure 3.76 MPa is close to thecritical pressure of SF6 and the highest pressure 7.38 MPa is close to the critical pressure of CO 2. Measurements atx =  0.5 have been made over the pressure range (2.5 to 10.0) MPa at the temperature 301.95 K. Some of the measurements are very close to the critical locus of the mixture. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6} and{xCO2 +  (1   x)C2H4} . The equation was used to calculate residual enthalpies and residual volumes for the pure components and for the mixture, and inspection of the way these combine to give excess enthalpies and volumes assisted the interpretation of the pressure scan measurements.  相似文献   

17.
Heat capacity of tetraphenylantimony benzophenoxymate Ph4SbONCPh2 is measured for first time using adiabatic calorimeter in the range from 6K to 350K and differential scanning calorimeter in the range from 330 K to 450 K. In the range of 400–450 K is revealed a melting accompanied with partial decomposition of the substance. Standard thermodynamic functions of crystalline Ph4SbONCPh2 in the range from T → 0 K to 440 K are calculated. Enthalpy of combustion of this compound is measured in a combustion calorimeter with isothermal cover and static bomb. Standard thermodynamic formation functions of crystalline Ph4SbONCPh2 at 298.15 K are calculated. Fractal dimension D is revealed.  相似文献   

18.
Thermodynamic properties of schapbachite (α-AgBiS2) in the phase assemblage α-AgBiS2–AgBi3S5–Bi have been studied by an EMF-technique. The EMF-measurements were made on the galvanic cell Pt(−)|Ag|AgI|AgBiS2 + AgBi3S5 + Bi|C|Pt(+), over the temperature range from (429 to 699) K. According to the EMF vs. temperature relations obtained, the enthalpy of the phase transformation from β-AgBi1+xS2 to α-AgBi1+xS2, at T = (465.55 ± 5) K, was calculated to be (7.3 ± 2.1) kJ · mol−1. New experimentally determined thermodynamic properties of the bismuth-saturated schapbachite (α-AgBi1+xS2), for each temperature region of the stable phases Bi(s) and Bi(l), were generated and analysed in detail. Based on the experimental results, Gibbs free energies of sulfidation reactions including Ag, Bi(l), S2(g), Ag2S and Bi2S3 to produce the bismuth-saturated schapbachite (α-AgBi1+xS2) have been evaluated. It has been observed that within the temperature range from (474 to 680) K, schapbachite saturated with bismuth (α-AgBi1+xS2) is thermodynamically more stable than the stoichiometric schapbachite (α-AgBiS2).  相似文献   

19.
For the first time, the heat capacity $ C_{\text{p}}^{^\circ } $ of poly(2-ethylhexyl acrylate) has been studied in an adiabatic vacuum calorimeter between 7 and 350 K, the standard thermodynamic functions: heat capacity $ C_{\text{p}}^{^\circ } $ (T), enthalpy H°(T) ? H°(0), entropy S°(T) ? S°(0), Gibbs function G°(T) ? H°(0) have been calculated from T → 0 to 350 K. The energy of combustion Δc U of the compound under study has been measured in a calorimeter with a stationary bomb and an isothermal shell. The standard enthalpy of combustion Δc H° and thermodynamic parameters of formation—enthalpy Δf H°, entropy Δf S°, Gibbs function Δf G°—at T = 298.15 K have been calculated. The results have been used to calculate the thermodynamic characteristics of 2-ethylhexyl acrylate bulk polymerization into poly(2-ethylhexyl acrylate) over the range from T → 0 to 350 K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号