首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
程晓晗  聂玉峰  蔡力 《计算物理》2015,32(5):523-528
针对浅水方程,提出一种数值求解格式:空间方向采用满足熵稳定条件的数值通量,并在单元交界面处进行高阶WENO重构,时间上的推进采用强稳定的Runge-Kutta方法.模拟一维和二维经典问题,结果表明,该格式具有分辨率高、基本无振荡性等特点.  相似文献   

2.
A class of lower–upper symmetric Gauss–Seidel implicit weighted essentially nonoscillatory (WENO) schemes is developed for solving the preconditioned Navier–Stokes equations of primitive variables with Spalart–Allmaras one-equation turbulence model. The numerical flux of the present preconditioned WENO schemes consists of a first-order part and high-order part. For first-order part, we adopt the preconditioned Roe scheme and for the high-order part, we employ preconditioned WENO methods. For comparison purpose, a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning algorithm is devised and a discriminant is devised for adjusting the preconditioning parameters at low Mach numbers and turning off the preconditioning at intermediate or high Mach numbers. The computations are performed for the two-dimensional lid driven cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed viscous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic flow over HB-2 model. The solutions of the present algorithms are in good agreement with the experimental data. The application of the preconditioned WENO schemes to viscous flows at all speeds not only enhances the accuracy and robustness of resolving shock and discontinuities for supersonic flows, but also improves the accuracy of low Mach number flow with complicated smooth solution structures.  相似文献   

3.
This paper proposes a new WENO procedure to compute problems containing both discontinuities and a large disparity of characteristic scales.In a one-dimensional context, the WENO procedure is defined on a three-points stencil and designed to be sixth-order in regions of smoothness. We define a finite-volume discretization in which we consider the cell averages of the variable and its first derivative as discrete unknowns. The reconstruction of their point-values is then ensured by a unique sixth-order Hermite polynomial. This polynomial is considered as a symmetric and convex combination, by ideal weights, of three fourth-order polynomials: a central polynomial, defined on the three-points stencil, is combined with two polynomials based on the left and the right two-points stencils.The symmetric nature of such an interpolation has an important consequence: the choice of ideal weights has no influence on the properties of the discretization. This advantage enables to formulate the Hermite interpolation for non-uniform meshes. Following the methodology of the classic WENO procedure, nonlinear weights are then defined.To deal with the peculiarities of the Hermite interpolation near discontinuities, we define a new procedure in order for the nonlinear weights to smoothly evolve between the ideal weights, in regions of smoothness, and one-sided weights, otherwise.The resulting scheme is a sixth-order WENO method based on central Hermite interpolation and TVD Runge–Kutta time-integration. We call this scheme the HCWENO6 scheme.Numerical experiments in the scalar and the 1D Euler cases make it possible to check and to validate the options selected. In these experiments, we emphasize the resolution power of the method by computing test cases that model realistic aero-acoustic problems.  相似文献   

4.
A high-order accurate hybrid central-WENO scheme is proposed. The fifth order WENO scheme [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] is divided into two parts, a central flux part and a numerical dissipation part, and is coupled with a central flux scheme. Two sub-schemes, the WENO scheme and the central flux scheme, are hybridized by means of a weighting function that indicates the local smoothness of the flowfields. The derived hybrid central-WENO scheme is written as a combination of the central flux scheme and the numerical dissipation of the fifth order WENO scheme, which is controlled adaptively by a weighting function. The structure of the proposed hybrid central-WENO scheme is similar to that of the YSD-type filter scheme [H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238]. Therefore, the proposed hybrid scheme has also certain merits that the YSD-type filter scheme has. The accuracy and efficiency of the developed hybrid central-WENO scheme are investigated through numerical experiments on inviscid and viscous problems. Numerical results show that the proposed hybrid central-WENO scheme can resolve flow features extremely well.  相似文献   

5.
This paper proposes a new WENO procedure to compute multi-scale problems with embedded discontinuities, on non-uniform meshes.In a one-dimensional context, the WENO procedure is first defined on a five-points stencil and designed to be fifth-order accurate in regions of smoothness. To this end, we define a finite-volume discretization in which we consider the cell averages of the variable as the discrete unknowns. The reconstruction of their point-values is then ensured by a unique fifth-order polynomial. This optimum polynomial is considered as a symmetric and convex combination, by ideal weights, of four quadratic polynomials.The symmetric nature of the resulting interpolation has an important consequence: the choice of ideal weights has no influence on the accuracy of the discretization. This advantage enables to formulate the interpolation for non-uniform meshes. Following the methodology of the classic WENO procedure, non-oscillatory weights are then calculated from the ideal weights.We adapt this procedure for the non-linear weights to maintain the theoretical convergence properties of the optimum reconstruction, whatever the problem considered.The resulting scheme is a fifth-order WENO method based on central interpolation and TVD Runge–Kutta time-integration. We call this scheme the CWENO5 scheme.Numerical experiments in the scalar and the 1D Euler cases make it possible to check and to validate the options selected. In those experiments, we emphasize the resolution power of the method by computing test cases that model realistic aero-acoustic problems. Finally, the new algorithm is directly extended to bi-dimensional problems.  相似文献   

6.
An E-CUSP (energy-convective upwind and split pressure) scheme is developed to solve the equations of magnetohydrodynamics. Fifth order WENO reconstructions are employed to calculate the fluxes in order to achieve high order spacial accuracy. A characteristic speed of sound by averaging the fast wave speed and the acoustic speed of sound is suggested to evaluate the Mach number, which will yield robust and accurate solutions. The numerical experiments have demonstrated the accuracy and the capability of the new scheme to capture complex interactions of multiple shocks and vortices.  相似文献   

7.
A new multi-block hybrid compact–WENO finite-difference method for the massively parallel computation of compressible flows is presented. In contrast to earlier methods, our approach breaks the global dependence of compact methods by using explicit finite-difference methods at block interfaces and is fully conservative. The resulting method is fifth- and sixth-order accurate for the convective and diffusive fluxes, respectively. The impact of the explicit interface treatment on the stability and accuracy of the multi-block method is quantified for the advection and diffusion equations. Numerical errors increase slightly as the number of blocks is increased. It is also found that the maximum allowable time steps increase with the number of blocks. The method demonstrates excellent scalability on up to 1264 processors.  相似文献   

8.
In this paper, we propose a finite difference AMR-WENO method for hyperbolic conservation laws. The proposed method combines the adaptive mesh refinement (AMR) framework  and  with the high order finite difference weighted essentially non-oscillatory (WENO) method in space and the total variation diminishing (TVD) Runge–Kutta (RK) method in time (WENO-RK)  and  by a high order coupling. Our goal is to realize mesh adaptivity in the AMR framework, while maintaining very high (higher than second) order accuracy of the WENO-RK method in the finite difference setting. The high order coupling of AMR and WENO-RK is accomplished by high order prolongation in both space (WENO interpolation) and time (Hermite interpolation) from coarse to fine grid solutions, and at ghost points. The resulting AMR-WENO method is accurate, robust and efficient, due to the mesh adaptivity and very high order spatial and temporal accuracy. We have experimented with both the third and the fifth order AMR-WENO schemes. We demonstrate the accuracy of the proposed scheme using smooth test problems, and their quality and efficiency using several 1D and 2D nonlinear hyperbolic problems with very challenging initial conditions. The AMR solutions are observed to perform as well as, and in some cases even better than, the corresponding uniform fine grid solutions. We conclude that there is significant improvement of the fifth order AMR-WENO over the third order one, not only in accuracy for smooth problems, but also in its ability in resolving complicated solution structures, due to the very low numerical diffusion of high order schemes. In our work, we found that it is difficult to design a robust AMR-WENO scheme that is both conservative and high order (higher than second order), due to the mass inconsistency of coarse and fine grid solutions at the initial stage in a finite difference scheme. Resolving these issues as well as conducting comprehensive evaluation of computational efficiency constitute our future work.  相似文献   

9.
We present the general features of a bispinor field that obeys a third-order equation. It separates into two massive fields that obey the Dirac equation and a four-component massless field. We discuss briefly its electromagnetic interactions and a leptonic interaction that introduces a mass difference. This field can thus describe the electron, the muon and both neutrinos. The difficulties related to inconsistencies between electromagnetic and weak interactions for the two-component spinors are still present for the bispinor field.  相似文献   

10.
The goal of this work is to extend finite volume WENO and central WENO schemes to the hyperbolic balance laws with geometrical source term and spatially variable flux function. In particular, we apply proposed schemes to the shallow water and the open-channel flow equations where the source term depends on the channel geometry. For obtaining stable numerical schemes that are free of spurious oscillations, it becomes crucial to use the decomposed source term evaluation, which maintains the balancing between the flux gradient and the source term. In addition, the open-channel flow equations contain spatially variable flux function. The appropriate definitions of the terms that arise in the source term decomposition, in combination with the Roe approximate Riemann solver that includes the spatial derivative of the flux function, lead to the finite volume WENO scheme that satisfies the exact conservation property – the property of preserving the quiescent flow exactly. When the central WENO schemes are applied, additional reformulations are introduced for the transition from the staggered values to the nonstaggered ones and vice versa by using the WENO reconstruction procedure. The proposed central WENO schemes also preserve the quiescent flow, but only in prismatic channels. In various test problems the obtained balanced schemes show improvements in comparison with the standard versions of the proposed type schemes, as well as with some other first- and second-order numerical schemes.  相似文献   

11.
郭元  田奇  梁贤  李新亮 《计算物理》2018,35(4):397-404
为提高有限差分格式的分辨率,利用傅里叶分析对WENO格式进行色散及耗散优化,并给出优化的线性权重.用优化后的WENO格式与保单调格式(MP)进行加权混合,得到新的加权混合WENO格式(H-WENO).通过一维激波管问题、Shu-Osher问题及二维双Mach反射问题及R-T不稳定性问题对格式进行数值测试.结果显示,新格式具有强健的激波捕捉能力和对小尺度波结构的高分辨率,与原WENO格式相比改进明显.  相似文献   

12.
A high-order incompressible flow solver with WENO   总被引:1,自引:0,他引:1  
A numerical method for solving the incompressible Navier–Stokes equations with a 5th-order weighted essentially non-oscillatory (WENO) scheme is presented. The method is not based on artificial compressibility and is free of tunable parameters such as the artificial compressibility parameter. The method makes use of the fractional-step method in conjunction with the low-dissipation and low-dispersion Runge–Kutta (LDDRK) scheme to improve temporal accuracy of the scheme. The use of a WENO scheme makes it possible to obtain stable solutions for discontinuous initial data and resolve difficult applications with strong shear such as Kelvin–Helmholtz instability or turbulence. Good convergence rate is established for the velocity variables and numerical solutions of the present method compare well with exact solutions and other numerical results.  相似文献   

13.
We present the properties of a two-component spinor field that obeys a third-order equation. It is separated into a massive part that corresponds closely to a Dirac field, and a massless part that obeys the Weyl equation. We discuss the interaction of such a field with an external electromagnetic field and the (weak) interactions of two such fields. They can be considered both in terms of relativistic quantum mechanics and quantum field theory. We conclude that this formulation has some attractive features, such as a unified treatment of electrons and muons with their neutrinos, a special role of thePC transformation, a more convergent propagator and a new approach to interactions. It also has some serious difficulties, aside from those generally associated with higher-order equations. These are mainly related to inconsistencies in the simultaneous considerations of electromagnetic and weak interactions. The approach also suggests a further unification of the electron and muon fields into a single bispinor field.  相似文献   

14.
A scheme for third-order ghost interference with thermal light is proposed. The visibility and resolution of the interference fringe related to the bandwidth of the spatial frequency spectrum of the source are analysed. The results show that the visibility of the third-order ghost interference fringe is much higher than that of the second-order one.  相似文献   

15.
In the framework of the Keating model with allowance made for the anharmonic constant of the central interaction between the nearest neighbors μ, analytical expressions have been obtained for three third-order independent elastic constants c ijk (μ, ζ) of single-layer graphene, where ζ = (2α − β)/(4α + β) is the Kleinman internal displacement parameter and α and β are the harmonic constants of the central interaction between the nearest neighbors and the noncentral interaction between the next-nearest neighbors, respectively. The dependences of the second-order elastic constants on the pressure p have been determined. It has been shown that the moduli c 11 and c 22 differently respond to the pressure. Therefore, graphene is isotropic in the harmonic approximation, whereas the inclusion of anharmonicity leads to the appearance of the anisotropy.  相似文献   

16.
We demonstrate room-temperature operation of broad-area edge-emitting photonic-crystal distributed-feedback quantum cascade lasers at λ  4.6 μm. The lasers use a weak-index perturbed third-order photonic-crystal lattice to control the optical mode in the wafer plane. Utilizing this coupling mechanism, the near-diffraction-limited beam quality with a far-field profile normal to the facet can be obtained. Single-mode operation with a signal-to-noise ratio of about 20 dB is achieved in the temperature range of 85–290 K. The single-facet output power is above 1 W for a 55 μm × 2.5 mm laser bar at 85 K in pulsed mode.  相似文献   

17.
In this paper, we study the existence of knot-like solitons realized as the energy-minimizing configurations in the Faddeev quantum field theory model. Topologically, these solitons are characterized by an Hopf invariant, Q, which is an integral class in the homotopy group 3(S2)=. We prove in the full space situation that there exists an infinite subset of such that for any m, the Faddeev energy, E, has a minimizer among the topological class Q=m. Besides, we show that there always exists a least-positive-energy Faddeev soliton of non-zero Hopf invariant. In the bounded domain situation, we show that the existence of an energy minimizer holds for =. As a by-product, we obtain an important technical result which says that E and Q satisfy the sublinear inequality EC|Q|3/4, where C>0 is a universal constant. Such a fact explains why knotted (clustered soliton) configurations are preferred over widely separated unknotted (multisoliton) configurations when |Q| is sufficiently large.  相似文献   

18.
19.
Antonin Miks  Pavel Novak 《Optik》2010,121(23):2097-2104
The theory of third-order aberrations for a system of rotationally symmetric aspheric thin lenses and relations for calculation of the shape of rotationally symmetric aspheric spectacle lenses with zero astigmatism are described. A comparison of aspheric and spherical spectacle lens design is presented. Possible applications of aspheric lens surfaces are proposed including the design of a spectacle lens with two types of primary aberrations corrected, an anastigmatic spectacle lens with minimum weight and a spectacle lens with the desired aesthetic shape. Our work performs a complex analysis of the third-order design of spectacle lenses considering not only astigmatism but all types of primary aberrations and their combinations.  相似文献   

20.
We develop a method for calculating diamagnetic susceptibilities based on higher-order perturbation theory for the wave function and energy of the excited states of the hydrogen atom with degeneracy of arbitrary multiplicity. We derive analytical expressions for third-order matrix elements in the spherical states |nlm〉 with fixed principal quantum number n and magnetic quantum number m. The formulas for the susceptibilities of doubly degenerate levels are represented in the form of radical-fractional relationships containing polynomials in the principal quantum number. We establish the existence of a monotonic interdependence between the absolute values of susceptibilities of the first three orders. We also present the results of numerical calculations for the states with n⩽6 and m⩽3 mixed by the field. Finally, for Rydberg states with large n and small m we detect the existence of a discontinuity in the interdependence of the susceptibilities at the boundary between the doublet and equidistant parts of the spectrum of diamagnetic sublevels with opposite parities. Zh. éksp. Teor. Fiz. 116, 838–857 (September 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号