首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To study the nonlinear phenomena of rotors in the sense of bifurcation theory, the mechanical model of a symmetric flexible rotor is investigated which is supported by two identical journal bearings. Two types of journal bearings are considered. While the oil whirl and oil whip oscillations of rotors in plain journal bearings are widely examined, the floating ring bearings cause a quite different vibration behavior with several mode interactions and an area of so-called critical limit cycles leading to a rotor damage. For both types a Hopf bifurcation marks the beginning of the self-excited oscillations in the case of a perfectly balanced rotor. By applying the methods of numerical continuation the occurring limit cycles as well as their stability are determined. The different nonlinear effects with the corresponding bifurcations are explained by describing the global solution behavior of the rotor-bearing systems. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Aydin Boyaci  Wolfgang Seemann  Carsten Proppe 《PAMM》2007,7(1):4050005-4050006
Today, in high speed applications the rotors are commonly supported by hydrodynamic journal bearings. One typical configuration of journal bearings incorporated in automotive turbochargers is the floating ring bearing. Rotors supported by floating ring bearings have many advantages, regarding costs and power consumption for example. However, they might become unstable with increasing speed of rotation. At the onset of instability both the perfectly balanced and unbalanced rotor undergo self-excited vibrations which could cause the mechanical breakdown of the system. The “oil whip”-phenomenon, very well known from the investigations of the plain journal bearing occurs here in a different form. At the stability limit the rotor begins either oscillating with about the half of the ring speed or the half of the ring speed plus the half of the journal speed depending on the system parameters. For this reason a rotor-floating ring bearing model is presented showing the mentioned characteristics. By applying the nonlinear equations of motion the limit cycles of the system are determined and its loss of stability is investigated. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Summary The problem of the critical speed of revolution of a hollow rotor which has a water ring revolving inside and with it, is investigated and it is found to be identical with the critical speed of revolution of a rotor completely filled with water. As the calculation of the oscillations of the water ring itself shows, dangerous resonances with the rotor oscillations need not be expected.   相似文献   

4.
The influence of anisotropy of elastic bearings on forced oscillations of a rotor with the static and moment unbalance is studied for the cases of its fastening on a rigid shaft and on a flexible one. The rotor with four degrees of freedom is considered. It is suggested that the shaft is fixed in linear elastic nonisotropic bearings. The differential equations of rotation of the rotor are written in complex variables, and an exact solution to the equation system is found that corresponds to the elliptical synchronous precession. The exact solution is a sum of two vectors, one of which parameterizes a forward precession, while another parameterizes a reverse precession. Amplitude-frequency characteristics of forward and reverse precessions and elliptical trajectories of the rotor axis ends are constructed. It is shown that, in case of nonisotropic bearings, both the forward and reverse precession, as well as the axis motion of nonsimple type (when its one end is moving forward, while another is moving in the reverse direction), can take place. The influence of anisotropy of elastic bearings also manifests itself by change in critical frequencies towards their reduction and by arising of additional critical frequencies in the bottom part of the spectrum, which significantly complicates dynamics of the high-speed rotor at the moment when it reaches the working angular speed.  相似文献   

5.
Kai Becker  Wolfgang Seemann 《PAMM》2016,16(1):263-264
Improving the dynamic behaviour of rotor systems in journal bearings represents an ongoing topic of research. The pressure distribution within journal bearings is described by the Reynolds equation, whereby unwanted oscillations can be caused by the fluid-solid interaction within the bearings. An approach of a two-lobe bearing with time-varying geometry is suggested to suppress or at least to reduce occurring oscillations. In order to systematically analyse the system, a spectral reduction is performed, allowing to handle also quasi-periodic behaviour by means of numerical continuation algorithms. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Rotors in electrical machines are supported by various types of bearings. In general, the rotor bearings have nonlinear stiffness properties and they influence the rotor vibrations significantly. In this work, this influence of these nonlinearities is investigated. A simplified finite element model using Timoshenko beam elements is set up for the heterogeneous structure of the rotor. A transversally isotropic material model is adopted for the rotor core stack. Imposing the nonlinear bearing stiffnesses on the model, the Newton-Raphson procedure is used to carry out a run up simulation. The spectral content of these results shows nonlinear effects due to the bearings. The rotor vibrations are further investigated in detail for various constant speeds. These results show non-harmonic vibrations of the rotor in a section of the investigated speed range. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
根据Floquet理论定义了非线性非自治系统周期解的稳定度.从动力系统流的概念出发,给出利用非线性非自治系统稳态周期解受扰后的瞬态响应,计算周期解稳定度的数值计算方法.以稳定度等于零为临界判据,分析计算了滑动轴承平衡和不平衡刚性转子系统的稳定吸引域.研究发现,平衡转子随着转速的升高稳定域减小;不平衡转子随着不平衡量的增大稳定域减小;且工频周期解的稳定域比同样系统条件下平衡点的稳定域小.  相似文献   

8.
磁轴承失灵后坠落转子瞬态振动灾变机理研究   总被引:1,自引:0,他引:1  
方之楚 《应用数学和力学》2002,23(11):1177-1182
研究一个带磁轴承的转子系统,在磁轴承失灵后转子坠入备用轴承引起的非线性瞬态振动。通过严格建立运动方程和数值仿真计算,详尽地分析了坠落转子转动角速度变化和轴颈与备用轴承接触点法向力变化的时间历程及备用轴承振动位移的频谱,发现系统发生灾变破坏的原因是由于高速不平衡阻尼转子减速通过临界速度时引起的强烈非稳态受迫弯曲振动加上轴颈与备用轴承接触点碰摩的非线性引起的高频颤振。  相似文献   

9.
非线性转子系统稳定性量化分析方法   总被引:4,自引:0,他引:4  
转子轴承系统是一类多自由度非线性动力系统,广泛应用于工程实际.设计观念和维修体制的变革提出了稳定性量化分析的要求.本文利用轨线保稳降维方法提出了转子系统稳定性的量化分析方法.首先,对高维非线性非自治转子系统进行数值积分,将n维空间的轨线映射为一系列一维的映象轨线,并将各自由度的运动方程中除该自由度外的所有状态变量用积分结果代换,得到n个互相解耦,含有多个时变参数的单自由度方程.然后,在一维观察空间的外力位移扩展相平面上定义了动态中心点,研究转子系统中常见的几种运动的动态中心点动能差序列的特点,给出了上述典型运动形式的轨线稳定裕度的定量评估指标,应用灵敏度分析技术快速有效地预测周期运动的倍周期分岔点和Hopf分岔点.以一个具有非线性支承的滑动轴承柔性转子模型为例,证明了该方法的有效性.  相似文献   

10.
The loss of stability of the cylindrical and conical precession of a rigid unbalanced rotor in non-linear elastic bearings with dissipation accompanying a change in the angular velocity of rotation of the rotor is investigated. It is assumed that the rotor has four degrees of freedom. It is established, using equations of the first degree of approximation, that the loss of stability of cylindrical and conical precessions on passing through a zero root can be accompanied by the excitation of a direct synchronous precession of the hyperboloidal type. Moreover, the equation of the boundary for the onset of self-excited oscillations is obtained and it is shown by means of numerical modelling that supercritical Hopf bifurcation and a strange attractor can occur.  相似文献   

11.
《Applied Mathematical Modelling》2014,38(21-22):5239-5255
The strong nonlinear behavior usually exists in rotor systems supported by oil-film journal bearings. In this paper, the partial derivative method is extended to the second-order approximate extent to predict the nonlinear dynamic stiffness and damping coefficients of finite-long journal bearings. And the nonlinear oil-film forces approximately represented by dynamic coefficients are used to analyze nonlinear dynamic performance of a symmetrical flexible rotor-bearing system via the journal orbit, phase portrait and Poincaré map. The effects of mass eccentricity on dynamic behaviors of rotor system are mainly investigated. Moreover, the computational method of nonlinear dynamic coefficients of infinite-short bearing is presented. The nonlinear oil-film forces model of finite-long bearing is validated by comparing the numerical results with those obtained by an infinite-short bearing-rotor system model. The results show that the representation method of nonlinear oil-film forces by dynamic coefficients has universal applicability and allows one easily to conduct the nonlinear dynamic analysis of rotor systems.  相似文献   

12.
This study presents numerical work investigating the dynamic responses of a flexible rotor supported by porous journal bearings. Both porous and non-porous bearing types are taken into consideration in this study. The rotating speed ratios and imbalance parameters are also presented and proved to be important control parameters. Many non-periodic responses to chaotic and quasi-periodic motions are found, too. From the bifurcation diagrams in this paper, it is also evidenced that the vibration behaviors would be improved by porous bearings. The modeling result obtained here can be employed to predict the dynamics of bearing–rotor systems, and undesirable behavior of the rotor and bearing orbits can be avoided. Also, this could help engineers and researchers in designing and studying bearing–rotor systems or some turbo-machinery in the future.  相似文献   

13.
F. Lsch  Ph. Bühler 《PAMM》2002,1(1):242-243
The present paper deals with the problem of levitating rotors with unknown characteristics by means of active magnetic bearings whose properties are known. This problem is of interest in a technical setting to shorten the development time of AMB systems, in particular for controller design. Theoretical interest arises from the fact that several issues in the area of identification and self tuning control are addressed for an unstable system. Our aim is to identify the flexible rotor including gyroscopic effects and to automatically design a robustly stabilizing controller for this system that can be used for running the system under regular operating conditions. To this end, a rigid body model of the rotor is identified based on measured step responses from the plant. Then, the bearings are adjusted to have very low stiffness, and a controller with steep roll‐off is designed in order to avoid excitation of the unknown flexible modes of the system. Once the rotor is floating, the identification algorithm from [1] is applied to obtain information on the flexible modes of the system. Based on this extended model, a robust controller allowing for slow rotation of the rotor is designed. With the rotor rotating at a moderate speed, the frequency response functions are measured, and based on these measurements, the gyroscopic matrixof the system is identified, completing the system model and allowing for design of the desired controller for normal operation. The present contribution focusses on identification of the rigid body model of the flexible rotor.  相似文献   

14.
Zdenka Rendlova 《PAMM》2011,11(1):65-66
This paper aims at creating a mathematical model of a bending oscillation rotor system which enables to execute a dynamical analysis of its vibration including the influence of nonlinear bearing characteristics. More specifically, using the finite element method the model of rotating system supported by four hydrodynamic bearings was created. The basic dynamical analysis of the rotor system was performed and the eigenvalues, eigenvectors and stability conditions were evaluated. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This paper presents the non-linear dynamic analysis of a flexible rotor having unbalanced and supported by ball bearings. The rolling element bearings are modeled as two degree of freedom elements where the kinematics of the rolling elements are taken into account, as well as the internal clearance and the Hertz contact non-linearity. In order to calculate the periodic response of this non-linear system, the harmonic balance method is used. This method is implemented with an exact condensation strategy to reduce the computational time. Moreover, the stability of the non-linear system is analyzed in the frequency-domain by a method based on a perturbation applied to the known harmonic solution in the time domain.  相似文献   

16.
This work reports on a numerical investigation on the bifurcations of a flexible rotor response in active magnetic bearings taking into account the nonlinearity due to the geometric coupling of the magnetic actuators as well as that arising from the actuator forces that are nonlinear function of the coil current and the air gap. For the values of design and operating parameters of the rotor-bearing system investigated in this work, numerical results showed that the response of the rotor was always synchronous when the values of the geometric coupling parameter α were small. For relatively larger values of α, however, the response of the rotor displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods-2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results further revealed the co-existence of multiple attractors within certain ranges of the speed parameter Ω. In practical rotating machinery supported by active magnetic bearings, the possibility of synchronous rotor response to become non-synchronous or even chaotic cannot be ignored as preloads, fluid forces or other external excitation forces may cause the rotor’s initial conditions to move from one basin of attraction to another. Non-synchronous and chaotic vibrations should be avoided as they induce fluctuating stresses that may lead to premature failure of the machinery’s main components.  相似文献   

17.
This paper investigates the nonlinear response and bifurcation of rotor with Squeezed Film Damper (SFD) supported on elastic foundation. The motion equations are derived. To analyze the bifurcation of nonlinear response of SFD rotor, the Floquet Multipliers is obtained by solving the perturbation equations with numerical method. For computing Floquet Multipliers, a novel method is presented in this paper, which can begin integration at the stable solution. Simulation results are given in two figures. One figure, which consists of eight subfigures, gives the effect of rotating speed on the response of SFD damper supported on elastic foundation: with increasing rotating speed, the nonlinear response evolves from quasi-period to period, then jumps between different periods, and finally returns to quasi-period; the corresponding bifurcations are saddle-node bifurcation and secondary Hopf bifurcation. The second figure, which consists of six subfigures, shows that: the support stiffness has large influence on the response of bearings and film force in SFD; large support stiffness can lead to oil whirl in SFD.  相似文献   

18.
This work reports on a numerical study undertaken to investigate the response of an imbalanced rigid rotor supported by active magnetic bearings. The mathematical model of the rotor-bearing system used in this study incorporates nonlinearity arising from the electromagnetic force—coil current—air gap relationship, and the effects of geometrical cross-coupling. The response of the rotor is observed to exhibit a rich variety of dynamical behavior including synchronous, sub-synchronous, quasi-periodic and chaotic vibrations. The transition from synchronous rotor response to chaos is via the torus breakdown route. As the rotor imbalance magnitude is increased, the synchronous rotor response undergoes a secondary Hopf bifurcation resulting in quasi-periodic vibration, which is characterized by a torus attractor. With further increase in the rotor imbalance magnitude, this attractor is seen to develop wrinkles and becomes unstable resulting in a fractal torus attractor. The fractal torus is eventually destroyed as the rotor imbalance magnitude is further increased. Quasi-periodic and frequency-locked sub-synchronous vibrations are seen to appear and disappear alternately before the emergence of chaos in the response of the rotor. The magnitude of rotor imbalance where sub-synchronous, quasi-periodic and chaotic vibrations are observed in this study, albeit being higher than the specified imbalance level for rotating machinery, may possibly occur due to a gradual degradation of the rotor balance quality during operation.  相似文献   

19.
Linear and non-linear stability of a flexible rotor-bearing system supported on short and long journal bearings is studied for both laminar and turbulent operating conditions. The turbulent pressure distribution and forces are calculated analytically from the modified Reynolds equation based on two turbulent models; Constantinescu's and Ng–Pan–Elrod. Hopf bifurcation theory was utilized to estimate the local stability of periodic solutions near bifurcating operating points. The shaft stiffness was found to play an important role in bifurcating regions on the stable boundaries. It was found that for shafts supported on short journal bearings with shaft stiffness above a critical value, the dangerous subcritical region can be eliminated from a range of operating conditions with high static load. The results presented have been verified by published results in the open literature.  相似文献   

20.
This contribution is concerned with the computational analysis of a rigid rotor supported by means of two self-acting foil air journal bearings. Even though the overall equation system is thereby typically written in a nondimensional form, prior knowledge about realistic value ranges of occurring dimensionless numbers is required in order to parameterize and interpret such simulations correctly. Unlike all other quantities, the nominal lubrication gap clearance between the rotating journal and the undeformed foil structure is reported to be only poorly known. Thus, even in the light of an advanced understanding of the bearing rotor system's fundamental behavior, the quantitative reproduction and prediction of experimental results by means of computational analysis need to be viewed critically. In this study, the sensitivity of numerical results towards the assumed nominal lubrication gap clearance will be investigated. To this end, the stability of the system is considered and the characteristics of occasionally observed equilibrium points and limit cycles are addressed. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号