首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vector-matrix formalism of nonholonomic mechanics is set up, which is used to construct mathematical models of mobile wheeled robots. The properties of free (ballistic) motions of mobile robots, which can be the basis of natural motion control modes, are studied. The analysis of uncontrollable motions is carried out, taking transients in circuits of the electric drive into consideration. The problem of determining voltages supplied to drives of the robot that ensure implementation of program motions is discussed. One candidate solution of a problem of planning a pathway of the robot in an ordered medium is presented. A mobile single-wheeled robot with a gyroscopic stabilization system is described—the “Gyrowheel” robot, capable of moving autonomously along a straight-line (rectilinear motion), as well as along a curvilinear pathway. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 8, pp. 29–80, 2005.  相似文献   

2.
We consider nonholonomic mobile robots. Since the system is finite time controllable, it is stabilizable by a receding horizon control scheme with purely quadratic stage costs if an infinite optimization horizon is employed. However, due to the so called short-sightedness of model predictive control, these stability properties are not preserved if the control problem is only optimized on a truncated and, thus, finite prediction horizon — even if an arbitrarily large terminal weight is added. Hence, it is necessary to either incorporate structurally different terminal costs or use non-quadratic stage costs to appropriately penalize the deviation from the desired set point. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper, navigation techniques for several mobile robots are investigated in a totally unknown environment. In the beginning, Fuzzy logic controllers (FLC) using different membership functions are developed and used to navigate mobile robots. First a fuzzy controller has been used with four types of input members, two types of output members and three parameters each. Next two types of fuzzy controllers have been developed having same input members and output members with five parameters each. Each robot has an array of sensors for measuring the distances of obstacles around it and an image sensor for detecting the bearing of the target. It is found that the FLC having Gaussian membership function is best suitable for navigation of multiple mobile robots. Then a hybrid neuro-fuzzy technique has been designed for the same problem. The neuro-fuzzy technique being used here comprises a neural network, which is acting as a pre processor for a fuzzy controller. The neural network considered for neuro-fuzzy technique is a multi-layer perceptron, with two hidden layers. These techniques have been demonstrated in simulation mode, which depicts that the robots are able to avoid obstacles and reach the targets efficiently. Amongst the techniques developed neuro-fuzzy technique is found to be most efficient for mobile robots navigation. Experimental verifications have been done with the simulation results to prove the authenticity of the developed neuro-fuzzy technique.  相似文献   

4.
This paper presents a localization method using fuzzy logic to represent the different facets of uncertainty present in sensor data. Our method follows the typical predict-update cycle of recursive state estimators to estimate the robot’s location. The method is implemented on a fuzzy position grid, and several simplifications are introduced to reduce computational complexity. The main advantages of this fuzzy logic method compared to most current ones are: (i) only an approximate sensor model is required, (ii) several facets of location uncertainty can be represented, and (iii) ambiguities in the sensor information are directly represented, thus avoiding having to solve the data association problem separately. Our method has been validated experimentally on two different platforms, a legged robot equipped with vision and a wheeled robot equipped with range sensors. The experiments show that our method can solve both the tracking and the global localization problem. They also show that this method can successfully cope with ambiguous observations, when several features may be associated to the same observation, and with robot kidnapping situations. Additional experiments are presented that compare our approach with a state-of-the-art probabilistic method.  相似文献   

5.
Bacterial memetic algorithm for offline path planning of mobile robots   总被引:1,自引:0,他引:1  
The goal of the path planning problem is to determine an optimal collision-free path between a start and a target point for a mobile robot in an environment surrounded by obstacles. This problem belongs to the group of combinatorial optimization problems which are approached by modern optimization techniques such as evolutionary algorithms. In this paper the bacterial memetic algorithm is proposed for path planning of a mobile robot. The objective is to minimize the path length and the number of turns without colliding with an obstacle. The representation used in the paper fits well to the algorithm. Memetic algorithms combine evolutionary algorithms with local search heuristics in order to speed up the evolutionary process. The bacterial memetic algorithm applies the bacterial operators instead of the genetic algorithm??s crossover and mutation operator. One advantage of these operators is that they easily can handle individuals with different length. The method is able to generate a collision-free path for the robot even in complicated search spaces. The proposed algorithm is tested in real environment.  相似文献   

6.
An adaptive tracking design strategy based on quantized state feedback is developed for uncertain nonholonomic mobile robots with unknown wheel slippage effects. All state variables and control torques are assumed to be quantized by the state and input quantizers, respectively, in a network control environment. Thus, the quantized state feedback information is only available for the tracking control design. An approximation-based adaptive controller using quantized states is recursively designed to ensure the robust adaptive tracking against unknown wheel slippage effects where the quantized-states-based adaptive mechanism is derived to compensate for unknown wheel slippage effects, system nonlinearities, and quantization errors. The boundedness of the quantization errors and estimated parameters in the closed-loop system is analyzed by presenting some theoretical lemmas. Based on these lemmas, we prove the uniform ultimate boundedness of closed-loop signals and the convergence of the trajectory tracking error in the presence of wheel slippage effects. Simulations verify the effectiveness of the resulting tracking scheme.  相似文献   

7.
The paper presents a design of a nonlinear velocity observer and its application within a model-based tracking control strategy for tracking task-based motions of unicycle type mobile robots. The strategy is the model reference tracking control strategy for programmed motion and it enables switching between controllers employed in it to improve a tracking precision as well as switching between coordinates used for modeling based on a type of a nonholonomic system. The strategy benefits by adding the velocity observer to its architecture due to the reduction of a number of measurements needed for feedback tracking.  相似文献   

8.
9.
A redundant robot has more degrees of freedom than those neededto position the Robert end-effector uniquely. In a usual robotictask, only end-effector position trajectory is specified. Thejoint position trajectory is unknown, and it must be selectedfrom a self-motion manifold for a specified end-effector. Inmany situations, the robot dynamic parameters such as the linkmass, inertia, and joint viscous friction are unknown. The lackof knowledge of the joint trajectory and the dynamic parametersmake it difficult to control redundant robots. In this paper we show, through careful formulation of the problem,that the adaptative control of redundant robots can be addressedas a reference-velocity traking problem in the joint space.A control law ensures bounded estimation of the unknown dynamicparameters of the robot, and the convergence to zero of thevelocity traking error is derived. To ensure the joint motionon the self-motion manifold remains bounded, a homeomorphictransformation is found. This transformation decomposes thedynamics of the velocity tracking error into a cascade systemconsisting of the dynamics in the end-effector error coordinatesand the dynamics on the self-motion manifold. The dynamics onthe self-motion manifold is shown to be related to the conceptof zero dynamics. In the shown that, if the reference jointtrajectory is selected to optimize a certain type of objectivefunction, then stable dynamics on the self-motion manifold result.This ensures the overall stability of the adaptive system. Detailedsimulations are given to test the theoretical developments.The proposed adaptive scheme does not require measurements ofthe joint acceleration or the inversion of the inertia matrixof the robot.  相似文献   

10.
11.
The development of flexible manufacturing systems calls for industrial robots characterized by robustness of performance with regard to the variations of the loads and real time specification of the trajectory in the work space. In this paper, the design of a feedback controller guaranteeing such performance is considered. At first, the manipulator dynamics are embedded into a larger class of uncertain dynamical systems and a class of feedback controls is proposed that guarantees uniform ultimate boundedness of the tracking error. Successively, the methodology is specialized for the case of robotic manipulators to track trajectories described in task-oriented coordinates; the proposed control algorithm operates without requiring any explicit coordinate transformation.  相似文献   

12.
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.  相似文献   

13.
In this study, we consider a quantized-feedback-communication-based control design problem for the distributed adaptive formation tracking of multiple nonholonomic mobile robots with unknown slippage constraints under capacity-limited network control environments. Uniform-hysteretic quantizers are employed to quantize all the inputs and states of robots and the quantized position information of each robot is only transmitted to neighboring robots through directed networks. Compared with existing literature related to the robot formation, the primary contribution of this paper lies in establishing a novel local adaptive control design methodology to deal with the discontinuity problem caused by using the quantized states of each follower and the quantized position communication of neighboring robots. In the proposed strategy, the communication of the orientations and velocities of neighboring robots is not required for the local control design of follower robots. Moreover, quantized-states-based adaptive compensation schemes are constructed for the effects of signal quantization and wheel slippage. Based on the analysis of quantization errors, the practical stability strategy of the overall closed-loop formation system is derived with the convergence of local tracking errors. Simulation results clarify the proposed formation strategy.  相似文献   

14.
Michael Schacher 《PAMM》2007,7(1):1061801-1061802
The most important aspect in the optimal control and design of manipulators is the determination of the basic movement, i.e. the calculation of the optimal trajectory on which the robot has to move. Having an optimal reference trajectory and an optimal open-loop control, there is the need of control corrections by applying a certain feedback control. Different attempts exist for this. In this article a method will be shown which is based on classical control theory, that works with cost functions being minimized. The aim is to take into account stochastic parameter variations in order to obtain robust optimal feedback controls. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Based on the modified state-space self-tuning control (STC) via the observer/Kalman filter identification (OKID) method, an effective low-order tuner for fault-tolerant control of a class of unknown nonlinear stochastic sampled-data systems is proposed in this paper. The OKID method is a time-domain technique that identifies a discrete input–output map by using known input–output sampled data in the general coordinate form, through an extension of the eigensystem realization algorithm (ERA). Then, the above identified model in a general coordinate form is transformed to an observer form to provide a computationally effective initialization for a low-order on-line “auto-regressive moving average process with exogenous (ARMAX) model”-based identification. Furthermore, the proposed approach uses a modified Kalman filter estimate algorithm and the current-output-based observer to repair the drawback of the system multiple failures. Thus, the fault-tolerant control (FTC) performance can be significantly improved. As a result, a low-order state-space self-tuning control (STC) is constructed. Finally, the method is applied for a three-tank system with various faults to demonstrate the effectiveness of the proposed methodology.  相似文献   

16.
A non-holonomic constant-speed robot travels in an unknown maze-like environment cluttered with complex obstacles. Through the obstacle-free part of the plane, the robot should autonomously arrive at the isoline where an unknown scalar field assumes a given value. Afterwards, it should track the obstacle-free part of the isoline. The robot has access only to the field value at the current location and the distance from this location to the obstacles. We present a hybrid nonlinear navigation law that solves this mission. The law does not use estimation of the field gradient and is non-demanding with respect to both computation and motion. The non-local convergence of the proposed algorithm is rigorously justified and confirmed by computer simulation tests.  相似文献   

17.
This paper focuses on the fault-tolerant output regulation problem for nonlinear systems with faults generated by exogenous systems that belong to a certain pre-specified set of models. The novelty is to design a fault-tolerant control (FTC) scheme for the overall system process where different faults may occur respectively at different time instants of the process, which is called the successional faulty case. The proposed FTC framework relies on a simple supervisory switching among a family of pre-computed candidate controllers. The output regulation goal is maintained in such a successional faulty case. A DC motor example illustrates the efficiency of the proposed method.  相似文献   

18.
Multiple-robot systems are usually confronted with uncertainties,such as uncertainties in the manipulators and load parameters,and unmodelled dynamics. In this paper, the problem of controllingmultiple manipulators handling a constrained load is addressed.A reduced-order dynamic model of the system is first derived,and several properties of this model are established. Usingthe reduced-order model, a robust control law is proposed. Thiscontroller guarantees the uniform ultimate boundedness of theposition error, the internal-force error, and the constraint-forceerror. The proposed control law requires only the bounds onthe uncertainties of the parameters. Simulation results of twoplanar robots moving a load along a horizontal plane are givento illustrate the theoretical developments.  相似文献   

19.
This work deals with asymptotic trajectory tracking and active damping injection on a flexible-link robot by application of Multiple Positive Position Feedback. The flexible-link robot is modeled and validated by using finite element methods and experimental modal analysis, and then a reduced order model of the flexible-link robot dynamics, up to the first dominant vibration modes, is employed for experimental evaluation on a test rig. Then, a combined control scheme is synthesized in two parts: first, a Sliding-Mode Control based on a cascaded Proportional-Integral-Derivative for regulation and trajectory tracking tasks, via a direct current motor torque as the control input for the overall system dynamics, and, second, a Multiple Positive Position Feedback for active vibration control and attenuation of residual vibrations on the tip position, via the input voltage applied to a piezoelectric patch actuator attached directly on the flexible beam. The results are evaluated on an experimental platform, where the dynamic performance of the overall active vibration control scheme leads to fast and effective tracking results, with damping ratios increased up to 300%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号