首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl acetate) (PVAc) was performed by macromolecular design via interchange of xanthates (MADIX) process. Following the preparation of methyl (isopropoxycarbonothioyl) sulfanyl acetate (MIPCTSA) as chain transfer agent, it was reacted with vinyl acetate to obtain PVAc macro-chain transfer agent. Then, block copolymerization was completed by successive addition of N-isopropylacrylamide (NIPAM). 1H NMR spectroscopy confirmed the presence of both blocks in the copolymer structure, with the expected composition based on the feed ratio. Size Exclusion Chromatography (SEC) was used to investigate the relative values of molecular characteristics. Only 20% of PVAc was converted to block copolymer. The resultant block copolymer structures were further examined in terms of their morphologies as well as critical micelle concentration (CMC) by using ESEM and Fluorescence Excitation Spectroscopic techniques, respectively. Morphological characterization confirmed amphiphilic block copolymer formation with the existence of mainly ca. 100 nm well distributed micelles. The thermo responsive amphiphilic behavior of the block copolymer solutions were followed by Dynamic Light Scattering (DLS) technique.  相似文献   

3.
Iodine transfer polymerization of vinyl acetate in bulk, initiated by α,α′-azobisisobutyronitrile at 80 °C, has been successfully performed in the presence of an α,ω-diiodo-poly(dimethylsiloxane) macrotransfer agent. The formation of a triblock copolymer PVAc-b-PDMS-b-PVAc has been proved by 1H NMR and size exclusion chromatography analyses. The analysis of the chain-ends has been performed using 1H NMR. It was found that a large amount of inverse chain-ends is present at the end of the polymerization. Moreover, the formation of several other side products by degradation of the functional chain-ends has been evidenced.  相似文献   

4.
Summary: Poly(vinyl acetate) macroinitiators end‐capped by a Co(acac)2 complex (PVAc–Co(acac)2), prepared in bulk by cobalt‐mediated radical polymerization (CMRP), are used for the controlled radical polymerization of vinyl acetate in miniemulsion to give high‐molecular‐weight polymers and high monomer conversion. Stable poly(vinyl acetate) latexes with solid contents ranging from 25 to 30 wt.‐% are prepared within unusually short reaction times (∼1 h) at low temperatures (0–30 °C).

SEC chromatograms for the PVAc–Co(acac)2 macroinitiator and PVAc latex obtained under ultrasonication for 6 min at 0 °C (79% monomer conversion).  相似文献   


5.

Composites of a polyindole (PIN) and poly(vinyl acetate) (PVAc) were prepared chemically using FeCl3 as an oxidant agent in anhydrous media. The composite compositions were altered by varying the indole monomer during preparation. The composites were characterized by FTIR and UV‐visible spectroscopies, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), stress‐strain experiments and conductivity measurements. Moreover, the film of PVAc and PIN/PVAc composites were prepared by casting on glass Petri dishes to examine their stress‐strain properties. PIN/PVAc composites are thermally more stable than PIN. It was found that the conductivities of PIN/PVAc composites depend on the indole content in the composites.  相似文献   

6.
The grafting preference of vinyl acetate onto the methine carbon of poly(vinyl alcohol) (PVOH) versus the acetate group of poly(vinyl acetate) (PVAc) was determined as part of an attempt to prepare novel branched PVOH from partially hydrolyzed PVAc. The results showed long chain grafting on the acetate groups of the PVAc units rather than the methine carbons of the PVOH or PVAc units. Decreasing the monomer or initiator concentration decreased the molecular weight of the graft copolymer formed. Of the initiators studied, ammonium persulfate gave the largest increase in copolymer molecular weight. Both hydrolysis and reacetylation combined with gel permeation chromatography (GPC) and 13C-NMR of the fully hydrolyzed material were used to estimate the number and location of grafts. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
聚甲基丙烯酸甲酯与聚醋酸乙烯酯共混的红外光谱研究   总被引:2,自引:0,他引:2  
用红外光谱(FTIR)研究了聚甲基丙烯酸甲酯(PMMA)与聚醋酸乙烯酯(PVAc)共混体系相容性,在160℃以上共混体系发生相分离;分相体系与非分相体系的FTIR谱明显不同;共混体系的FTIR谱不能从两统组分红外光谱简单加和得到;结果表明大分子构象发生了变化,PMMA/PVAc体系相容可能是大分子构象熵变所致。  相似文献   

8.
以N,N,N,′N′-四甲基乙二胺-过硫酸钾为氧化-还原引发体系,用水相沉淀聚合法合成了超高相对分子质量的聚醋酸乙烯(PVAc)。研究了引发剂浓度、反应温度、单体与水用量比、转化率等对聚合反应的影响。其结构用IR表征,相对分子质量及其分布和支化度用GPC测定。结果表明,醋酸乙烯最终转化率为90%~95%,PVAc的平均聚合度为8 000~15 000,相对分子质量分布指数为2.12~2.24,支化度为2.10~2.80。  相似文献   

9.
10.
Reverse iodine transfer polymerization (RITP) is a new controlled radical polymerization technique based on the use of molecular iodine I2 as control agent. This paper aims at presenting the basics of RITP and the strategy that we have followed for the development of this process in the past three years, from the validation in homogeneous solution polymerization up to recent results in heterogeneous aqueous polymerization processes. Typical examples of RITP of butyl acrylate in emulsion and RITP of styrene in miniemulsion are discussed.  相似文献   

11.
This paper presents a new route to the synthesis of UV-curable poly(dimethylsiloxane) dimethacrylate (PDMSDMA). PDMSDMA was essentially prepared by modification of poly(dimethylsiloxane), bis(3-aminopropyl) terminated (PDMS-NH2) with methacrylic anhydride (MAA). The synthesized products were cured under UV in the presence of camphorquinone (CQ) used as a photoinitiator. The chemical structure of PDMSDMA samples was analyzed by FT-IR and 1H-NMR spectroscopy. The 1H-NMR spectrum of PDMSDMA revealed new peaks at 3.20 ppm, corresponding to methylene protons in  CH2 NH , and 5.25 and 5.65 ppm, corresponding to vinylic protons in  NH CO CCH3CH2. The chemical structure of the cured products and the degree of curing were determined by solid state 13C CP/MAS NMR and FT-IR (Micro-ATR) spectroscopy. Various parameters, such as concentration of methacrylic anhydride, amount of camphorquinone, and curing time, were studied.  相似文献   

12.
Poly(vinyl acetate) (PVAc) nanogels are synthesized by a radical crosslinking copolymerization (RCC) in solution of vinyl acetate and divinyl adipate (DVA) or 2,4,6‐tris(allyloxy)‐1,3,5‐triazine (TAT) as the crosslinker, in the presence of a xanthate as a reversible chain transfer agent. Higher concentrations of crosslinker and lower concentrations of xanthate produce PVAc nanogels of higher molar masses, for a given concentration of xanthate and for a fixed concentration of crosslinker, respectively. The xanthate end‐groups allow for the synthesis of ‘second generation’ nanogels through a subsequent RCC from precursors. The chemical cleavage of the crosslinks yields individual poly(vinyl alcohol) chains, which attests that the length of the constitutive chains is controlled by the xanthate.

  相似文献   


13.
14.
Well‐defined poly(vinyl acetate) macroinitiators, with the chains thus end‐capped by a cobalt complex, were synthesized by cobalt‐mediated radical polymerization and used to initiate styrene polymerization at 30 °C. Although the polymerization of the second block was not controlled, poly(vinyl acetate)‐b‐polystyrene copolymers were successfully prepared and converted into amphiphilic poly(vinyl alcohol)‐b‐polystyrene copolymers by the methanolysis of the ester functions of the poly(vinyl acetate) block. These poly(vinyl alcohol)‐b‐polystyrene copolymers self‐associated in water with the formation of nanocups, at least when the poly(vinyl alcohol) content was low enough. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 81–89, 2007  相似文献   

15.
Poly(vinyl laurate) (PVL) and poly(vinyl stearate) (PVS) were synthesized by means of cobalt‐mediated radical polymerization (CMRP). Cobalt(II) diacetylacetonate (Co(acac)2) was demonstrated to control the radical polymerization of these monomers in solution. Molecular weights up to 15,000 g·mol?1 were obtained with reasonably low polydispersity indices (PDI < 1.3). The efficiency of the redox initiator [lauroyle peroxide (LPO)/citric acid (CA)] was found to be low (around 10%) as already reported for vinyl acetate. The solvent and temperature were found to have a very weak influence on the initiator efficiency. It appeared that CA played no role in the initiation process that only involved a redox reaction between LPO and Co(acac)2. PVL‐b‐PVS diblock copolymers could be synthesized using two strategies: (1) Sequential addition, that is, addition of the second monomer (VS) at high conversion of the first one (VL). (2) Macroinitiator technique, that is, isolation of a PVL macroinitiator then polymerization of VS from this cobalt functionalized macroinitiator. Both techniques allowed the synthesis of diblock copolymers with molar masses around 25,000 g·mol?1 and PDI lower than 1.4. The resulting materials were characterized by DSC, revealing that both blocks exhibit side‐chain crystallinity and phase segregate in the bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

17.
The thermal degradation of poly(vinyl acetate) (PVA), poly(vinyl alcohol) (PVAL), vinyl acetate-vinyl alcohol (VAVAL), vinyl acetate-vinyl-3,5-dinitrobenzoate (VAVDNB) and vinyl alcohol-3,5-dinitrobenzoate (VALVDNB) copolymers have been studied using differential thermal analysis (DTA) and thermogravimetry (TG) under isothermal and dynamic conditions in nitrogen. Thermal analysis indicates that PVA and PVAL are thermally more stable than VAVAL copolymers, being PVAL the most stable polymer. The presence of small amounts of vinyl-3,5-dinitrobenzoate (VDNB) in PVA or PVAL produces a marked decrease in the thermal stability of both homopolymers, being VALVDNB copolymers the less stable materials. The apparent activation energy of the degradative process was determined by the Kissinger and Flynn-Wall methods which agree well.  相似文献   

18.
The radical polymerization of vinyl acetate (VAc) is moderated by iron(II) acetylacetonate (Fe(acac)2) by the organometallic route (OMRP), as well as by degenerative transfer polymerization (DTP) when in the presence of excess radicals, through the formation of thermally labile organometallic FeIII dormant species. The poly(vinyl acetate) (PVAc)‐FeIII(acac)2 dormant species has been isolated in the form of an oligomer and characterized by 1H NMR, EPR, and IR methods, and then used as a single‐component initiator for the OMRP of VAc. The degree of polymerization of this isolated oligomeric species demonstrates the limited ability of Fe(acac)2, relative to the Co(acac)2 congener, to rapidly trap the growing PVAc radical chain. Control under OMRP conditions is improved by the presence of Lewis bases, especially PMe2Ph. On the other hand, iron(II) phthalocyanine inhibits the radical polymerization of VAc completely. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3494–3504  相似文献   

19.
α,ω‐di(iodo) poly(isobornyl acrylate) macroiniators (α,ω‐di(iodo)PIA) with number average molecular weight from M n,TriSEC = 11,456 to M n,TriSEC = 94,361 were synthesized by single electron transfer‐degenerative chain transfer mediated living radical polymerization (SET‐DTLRP) of isobornyl acrylate (IA) initiated with iodoform (CHI3) and catalyzed by sodium dithionite (Na2S2O4) in water at 35 °C. The plots of number average molecular weight vs conversion and ln{[M]0/[M]} vs time are linear, indicating a controlled polymerization. α,ω‐di(iodo) poly(isobornyl acrylate) have been used as a macroinitiator for the SET‐DTLRP of vinyl chloride (VCM) leading to high Tg block copolymers PVC‐b‐PIA‐b‐PVC. The dynamic mechanical thermal analysis of the block copolymers suggests just one phase indicating that copolymer behaves as a single material. This technology provides the possibility of synthesizing materials based on PVC with higher Tg in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

20.
许文静  张文生  闫金龙  李伟  申国玉 《应用化学》2011,28(10):1143-1147
在醋酸乙烯酯的普通自由基聚合体系中加入少量碘(质量分数为0.57%~0.86%),用偶氮二异丁腈作引发剂合成聚醋酸乙烯酯,对其聚合反应的动力学及反应机理进行了研究。 考察了碘质量分数对聚合反应速率、聚合物分子量及分子量分布的影响,发现随着碘浓度的增加,聚合物分子量及分子量分布得到更好的控制;对聚合过程进行了核磁跟踪,考察了聚合过程中几种化合物的变化情况,特别是初级自由基与碘生成的加合物A-I(A来自引发剂分裂后产生的自由基)及单体加合物A-Mn-I(M代表单体单元)的变化情况;对聚合物结构作了详细的1H NMR分析,结果表明,聚合过程中分子量随时间延长而逐渐增大,分子量分布随单体转化率增加而变窄,聚合终期,单体转化率达到80%左右时,所得聚合物分子量分布窄(Mw/Mn≤1.41),且含有碘端基。该方法的自由基聚合具有活性/可控的性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号