首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李艳强  贲腾  裘式纶 《化学学报》2015,73(6):605-610
通过简单的一步碳化方法, 以含氮的多孔有机骨架JUC-Z2为碳前驱物制备出氮掺杂多孔碳材料. 与原始JUC-Z2材料相比, 制备的多孔碳材料显示出明显提高的气体吸附量和增强的吸附焓. 其中JUC-Z2-900的CO2吸附量高达113 cm3·g-1, H2吸附量也达到246 cm3·g-1, 超过了大部分报道的多孔材料. 尤其是JUC-Z2-900的CH4吸附量在273 K, 1 bar下高达60 cm3·g-1, 据我们所知, 这一值为目前报道材料的最高值. 除此之外, 样品还显示出选择性吸附CO2的能力, 273 K下, JUC-Z2-900的CO2/N2的选择性高达10, CO2/H2的选择性也高达66. 另外, 样品具有很高的热稳定性, 有望应用在碳捕获和清洁能源储存等领域.  相似文献   

2.
Sustainable conversion of CO2 to fuels using solar energy is highly attractive for fuel production. This work focuses on the synthesis of porous graphitic carbon nitride nanobelt catalyst (PN-g-C3N4) and its capability of photocatalytic CO2 reduction. The surface area increased from 6.5 m2·g−1 (graphitic carbon nitride, g-C3N4) to 32.94 m2·g−1 (PN-g-C3N4). C≡N groups and vacant N2C were introduced on the surface. PN-g-C3N4 possessed higher absorbability of visible light and excellent photocatalytic activity, which was 5.7 and 6.3 times of g-C3N4 under visible light and simulated sunlight illumination, respectively. The enhanced photocatalytic activity may be owing to the porous nanobelt structure, enhanced absorbability of visible light, and surface vacant N-sites. It is expected that PN-g-C3N4 would be a promising candidate for CO2 photocatalytic conversion.  相似文献   

3.
N-enriched porous carbons have played an important part in CO2 adsorption application thanks to their abundant porosity, high stability and tailorable surface properties while still suffering from a non-efficient and high-cost synthesis method. Herein, a series of N-doped porous carbons were prepared by a facile one-pot KOH activating strategy from commercial urea formaldehyde resin (UF). The textural properties and nitrogen content of the N-doped carbons were carefully controlled by the activating temperature and KOH/UF mass ratios. As-prepared N-doped carbons show 3D block-shaped morphology, the BET surface area of up to 980 m2/g together with a pore volume of 0.52 cm3/g and N content of 23.51 wt%. The optimal adsorbent (UFK-600-0.2) presents a high CO2 uptake capacity of 4.03 mmol/g at 0 °C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents show moderate isosteric heat of adsorption (43–53 kJ/mol), acceptable ideal adsorption solution theory (IAST) selectivity of 35 and outstanding recycling performance. It has been pointed out that while the CO2 uptake was mostly dependent on the textural feature, the N content of carbon also plays a critical role to define the CO2 adsorption performance. The present study delivers favorable N-doped carbon for CO2 uptake and provides a promising strategy for the design and synthesis of the carbon adsorbents.  相似文献   

4.
常温下以间苯三酚和3-甲醛苯并噻吩作为原料,一步法合成了含硫酚醛树脂。在氩气保护下碳化,成功制备出了硫掺杂多孔碳(S-PC)。并利用扫描电镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)和氮气吸附-脱附仪对材料进行了形貌、结构和性能的表征。实验结果表明,所得样品具有较高比表面积和大量的微孔,经过调控,可以使制备的硫掺杂多孔碳的BET比表面积达到997 m2·g~(-1),并使其微孔孔体积达到0.44 cm3·g~(-1)。得益于较高的比表面积以及其富含微孔的特性,当材料应用于二氧化碳吸附时,具有较高的CO2吸附量,在273和298 K时分别高达5.13,3.22 mmol·g~(-1),并具有良好的选择性。  相似文献   

5.
常温下以间苯三酚和3-甲醛苯并噻吩作为原料,一步法合成了含硫酚醛树脂。在氩气保护下碳化,成功制备出了硫掺杂多孔碳(S-PC)。并利用扫描电镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)和氮气吸附-脱附仪对材料进行了形貌、结构和性能的表征。实验结果表明,所得样品具有较高比表面积和大量的微孔,经过调控,可以使制备的硫掺杂多孔碳的BET比表面积达到997 m2·g-1,并使其微孔孔体积达到0.44 cm3·g-1。得益于较高的比表面积以及其富含微孔的特性,当材料应用于二氧化碳吸附时,具有较高的CO2吸附量,在273和298 K时分别高达5.13,3.22 mmol·g-1,并具有良好的选择性。  相似文献   

6.
通过简单的离子热法,以四(4-氰基联苯基)硅烷作为四面体基块,将其与无水氯化锌在充满氩气气氛的手套箱中充分研磨后密封,分别以400和550 ℃的反应温度合成了新型多孔芳香骨架材料(PAF-51),得到PAF-51-1(400 ℃条件下)与PAF-51-2(550 ℃条件下)的比表面积分别为720和557 m2·g-1 (BET).与CH4和N2对比,该材料对CO2具有极好的选择性吸附能力. 273 K条件下,CO2/N2分离指数最高可达52.2,CO2/CH4分离指数也达到10.3,这一性质极有可能使得PAF-51成为捕获CO2理想材料,并对再生能源具有潜在的应用.  相似文献   

7.
Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4). However, it remains a critical challenge to effectively recognize C2H2 among CO2 and C2H4, owing to their analogous molecule sizes and physical properties. Herein, we report a new microporous metal–organic framework (NUM-14) possessing a carefully tailored pore system containing moderate pore size and nitro-functionalized channel surface for efficient separation of C2H2 from CO2 and C2H4. The activated NUM-14 (namely NUM-14a) exhibits sufficient pore space to acquire excellent C2H2 loading capacity (4.44 mmol g−1) under ambient conditions. In addition, it possesses dense nitro groups, acting as hydrogen bond acceptors, to selectively identify C2H2 molecules rather than CO2 and C2H4. The breakthrough experiments demonstrate the good actual separation ability of NUM-14a for C2H2/CO2 and C2H2/C2H4 mixtures. Furthermore, Grand Canonical Monte Carlo simulations indicate that the pore surface of the NUM-14a has a stronger affinity to preferentially bind C2H2 over CO2 and C2H4 via stronger C-H···O hydrogen bond interactions. This article provides some insights into customizing pore systems with desirable pore sizes and modifying groups in terms of MOF materials toward the capture of C2H2 from CO2 and C2H4 to promote the development of more MOF materials with excellent properties for gas adsorption and separation.  相似文献   

8.
The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.  相似文献   

9.
Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanotubes (MWCNTs), and then activated with KOH. The porosity of such carbon materials can be tuned by rational introduction of MWCNTs, adjusting the amount of KOH, and controlling the pyrolysis temperature. The obtained M/P-0.1-600-2 adsorbent possesses a high surface area of 1017 m2 g−1 and a high N content of 3.11 at%. Such M/P-0.1-600-2 adsorbent delivers an enhanced CO2 capture capability of 2.63 mmol g−1 at 298.15 K and five bars, which is 14 times higher than that of pristine MWCNTs (0.18 mmol g−1). In addition, such M/P-0.1-600-2 adsorbent performs with a good stability, with almost no decay in a successive five adsorption-desorption cycles.  相似文献   

10.
Atmospheric water harvesting represents a promising technique to address water stress. Advanced adsorbents have been rationally designed to achieve high water uptake, yet their water sorption kinetics and regeneration temperature greatly limit water production efficiency. Herein, we demonstrated that 2D covalent organic frameworks (COFs), featuring hydrophobic skeleton, proper hydrophilic site density, and 1D open channels significantly lowered the water diffusion and desorption energy barrier. DHTA-Pa COF showed a high water uptake of 0.48 g/g at 30 % R.H. with a remarkable adsorption rate of 0.72 L/Kg/h (298 K) and a desorption rate of 2.58 L/Kg/h (333 K). Moreover, more than 90 % adsorbed water could be released within 20 min at 313 K. This kinetic performance surpassed the reported porous materials and boosted the efficiency for multiple water extraction cycles. It may shed light on the material design strategy to achieve high daily water production with low-energy input.  相似文献   

11.
12.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

13.
Considering the rapidly rising CO2 level, there is a constant need for versatile materials which can selectively adsorb CO2 at low cost. The quest for efficient sorptive materials is still on since the practical applications of conventional porous materials possess certain limitations. In that context, we designed, synthesized, and characterized two novel supramolecular organic frameworks based on C‐pentylpyrogallol[4]arene (PgC5) with spacer molecules, such as 4,4′‐bipyridine (bpy). Highly optimized and symmetric intermolecular hydrogen‐bonding interactions between the main building blocks and comparatively weak van der Waals interactions between solvent molecules and PgC5 leads to the formation of robust extended frameworks, which withstand solvent evacuation from the crystal lattice. The evacuated framework shows excellent affinity for carbon dioxide over nitrogen and adsorbs ca. 3 wt % of CO2 at ambient temperature and pressure.  相似文献   

14.
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient‐wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO2 affinity were successfully encapsulated into the nanospace of Cr‐based MIL‐101 while retaining the crystal framework, morphology, and high stability of MIL‐101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL‐101, more affinity sites for CO2 are created in the resulting CB6@MIL‐101 composites, leading to enhanced CO2 uptake capacity and CO2/N2, CO2/CH4 separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.  相似文献   

15.
Utilization of porous materials for gas capture and separation is a hot research topic. Removal of acetylene (C2H2) from ethylene (C2H4) is important in the oil refining and petrochemical industries, since C2H2 impurities deactivate the catalysts and terminate the polymerization of C2H4. Carbon dioxide (CO2) emission from power plants contributes to global climate change and threatens the survival of life on this planet. Herein, 2D crystalline polyimide porous organic framework PAF-120, which was constructed by imidization of linear naphthalene-1,4,5,8-tetracarboxylic dianhydride and triangular 1,3,5-tris(4-aminophenyl)benzene, showed significant thermal and chemical stability. Low-pressure gas adsorption isotherms revealed that PAF-120 exhibits good selective adsorption of C2H2 over C2H4 and CO2 over N2. At 298 K and 1 bar, its C2H2 and CO2 selectivities were predicted to be 4.1 and 68.7, respectively. More importantly, PAF-120 exhibits the highest selectivity for C2H2/C2H4 separation among porous organic frameworks. Thus PAF-120 could be a suitable candidate for selective separation of C2H2 over C2H4 and CO2 over N2.  相似文献   

16.
The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy desorption is of high significance for reducing carbon emissions, which yet remains a great challenge. This work proposes a facile construction strategy of amino-functional dynamic covalent materials for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepentamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g−1) from simulated flue gas at 75 °C. This dynamic imine assembly strategy endowed the dynamic covalent materials with facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild and controllable approach for the development of competitive CO2 adsorbents.  相似文献   

17.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

18.
A 2D supramolecular organic framework (SOF) based on synthetic macrocycles has been constructed in water by a self-assembly strategy. Two new organic monomers of this SOF, possessing viologen and azobenzene functional groups, form a stimuli-responsive host–guest system upon cooperatively binding with cucurbit[8]uril rings. The reversible formation and dissociation of 2D SOF can be realized by the isomerization of azobenzene under ultraviolet and visible light. The light-responsive property of the SOF is highly reversible and stable for up to four cycles. Moreover, azoreductase produced by Escherichia coli can reduce the N=N double bond of azobenzene entities, resulting in fluorescence recovery of the system. As an excellent and effective fluorescent probe, the SOF can detect azoreductase activity for real-time monitoring of the growth process of Escherichia coli. The dual-stimuli responsive 2D SOF is envisioned to drive the development of responsive devices with complex functions.  相似文献   

19.
Environmental pollution is one of the most severe problems facing today, including water pollution and the greenhouse effect. Therefore, developing materials with high-efficiency dyes adsorption and CO2 uptake is significant. Covalent organic frameworks(COFs), as a burgeoning class of crystalline porous polymers, present a promising application potential in areas related to pollution regulation due to their exciting surface properties. Herein, we report a 3D COF with a high specific surface area(BET about 2072 m2/g) by utilizing tetrahedral and rectangle building blocks connected through[4+4] imine condensation reactions to synthesize. The obtained COF not only can separate dyes from water effectively but also shows a remarkable CO2 uptake capacity. This research thus provides a promising material to remove dyes and adsorb CO2 in environmental remediation.  相似文献   

20.
The porous TiO2 microspheres were prepared by the reversed-phase suspension polymerization and sol-gel method using reversed-phase suspension droplets as the templates. The CO oxidation catalytic properties of the CuO/TiO2 catalysts prepared by hydrothermal method and impregnation method were extensively investigated. The structure of CuO/TiO2 catalysts was determined by TG-DTA, XRD, TEM, and XPS. The results indicated that the redox capacity of CuO/TiO2 was greatly depended on the aqueous solution concentration of Cu(NO3)2 used in the preparation of CuO/TiO2 and the calcination temperature of the CuO/TiO2 catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号