The dynamic mechanical and dielectric behaviours of Polypropylene (PP) and (Ethylene-Vinyl Acetate) Copolymer (EVA) blends are reported as a function of the morphology. For EVA contents lower than 20%, blends show the two-phase morphology characteristic of immiscible blends, with spherical EVA droplets finely dispersed in the PP matrix. After stretching in the molten state, the morphology of EVA fibers is observed. Mechanical Relaxation Spectroscopy display three relaxation processes: the EVA and PP α-relaxations associated to the glass transitions and a β-transition corresponding to a PP crystalline phase relaxation. The PP α-relaxation shifts to higher temperatures when EVA presents a fiber morphology, corresponding to a decrease of PP chain mobility since it is hindered by the reinforcement effect of EVA fibers. Quite different results are obtained by DRS analysis. In blends containing EVA fibers, only one main relaxation associated to the EVA α-transition is observed whereas one additional relaxation can be noticed in the blends containing EVA droplets. This new relaxation might be assigned to interfacial polarization effects, phenomena that are sometimes observed in heterogeneous polymer blends when a low content of one polar component is embedded in a non conductive matrix. In this case, the occurrence of a characteristic interfacial polarization relaxation appears to be correlated to the accessible experimental frequency. 相似文献
Binary blends of poly (ether sulphone) (PES) and Nylon-6 were prepared in a whole range of composition by melt extrusion.
Miscibility behaviour of the blends were studied using thermal analytical techniques like differential scanning calorimetry
(DSC) and dynamic mechanical analysis (DMA). Due to the rapid crystallization of Nylon-6 as it is cooled from the melt state,
its glass transition behaviour could not be detected even in the quenched samples by DSC. Furthermore, the crystallization
and melting behaviour of the blends have been studied by DSC. DMA results show that the dynamic storage modulus of the blends
were in-between those of the constituent polymers. Also the glass transition of Nylon-6 phase as determined by the peak in
loss tangent remains constant which shows that the two polymers are immiscible. Thermal expansion coefficient of the blends
as determined by TMA is greater than that of Nylon-6 signifying the increased dimensional stability of the blends at higher
temperatures. Morphological studies done by scanning electron microscopy (SEM) show the biphasic nature of the blends, with
clear cut boundaries between the phases because of poor interfacial adhesion. Dispersed particle size is small when Nylon-6
is the dispersed phase because of its lower melt viscosity as compared to PES. Thermal stability of the blends was measured
using thermogravimetric analysis (TG). Two-step decomposition behaviour was observed because of macro-phase separated morphology.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
An investigation was carried out on the molecular dynamics of poly(glycolide) (PGA) in its completely amorphous state and during isothermal cold crystallization. Experimental results were generated over a wide range of frequency and temperature by broad-band dielectric spectroscopy (DRS). The variation of the average relaxation time (defined as τ= ½πfmax where fmax is the frequency at maximum loss for the main α relaxation) has been studied during cold crystallization and the temperature dependence of this average relaxation time for completely amorphous and crystallized samples has been analyzed. This behaviour has been modelled by Havriliak-Negami and Vogel-Fulcher equations. The sensitiveness of the segmental dynamics to the degree of crystallinity has been analyzed, taking into account the relaxing segments and the amorphous layers between lamellae. Supporting evidence about the thermal behaviour of the polymers has been obtained with DSC. Complementarily, the evolution of the morphologies obtained during crystallization processes has been followed by optical microscopy. 相似文献
Summary: Effect of high density polyethylene (HDPE) addition on the morphology of heterophasic poly(propylene) copolymer (HPC) was investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Stress whitening developed upon dart impact was evaluated using Gardner-type impact tester. In the TEM study of HPC/HDPE blends, a core-shell morphology was observed of HDPE encapsulated by ethylene-propylene rubber (EPR). At low HDPE weight fractions (95/5 and 90/10 HPC/HDPE), the size of dispersed phase increased compared to pure HPC. However, further increase in HDPE leads to a decrease in domain size. The impact strength reached a maximum at 90/10 HPC/HDPE blend, and then decreased with further increase in HDPE content. The stress whitening of HPC was decreased with addition of HDPE. This decrease is attributed to the difference in the shrinkage between HPC and HPC/HDPE blends. The pressure-volume-temperature relationship supports that an additional volume contraction of HDPE can reduce the stress whitening of HPC. 相似文献
Polybutadienes modified by a small number of 4-phenyl-1,2,4-triazoline-3,5-dione form thermoreversible networks via hydrogen bonding between the polar stickers. The molecular dynamics of systems with different contents of polar stickers are investigated by broadband dielectric spectroscopy in the frequency regime of 10–1–109 Hz. Unmodified polybutadiene shows two relaxation processes, the -relaxation which is correlated to the dynamic glass transition of the polybutadiene, and a -relaxation corresponding to a local relaxation of polybutadiene segments. In the polar functionalized systems, besides these two relaxations, an additional relaxation process (called *) is observed, which occurs at lower frequencies than the -process. While the -relaxation remains unaffected by the functionalization the cooperativity of the -relaxation increases by the formation of reversible junctions and slows down considerably. This indicates a decreased mobility of the polymer matrix. At the same time the dipole moment of relaxing units contributing to the -relaxation is increased by free phenyl urazole units. The * is assigned to the local complex dynamics resulting from the dissociation and formation of dimeric contacts. Hence, for this dynamic process, the absolute value of the dipole moment fluctuates with time and causes a dielectric absorption. This interpretation is in agreement with the hindered reptation model of Leibler, Rubinstein and Colby and simultaneous measurements of infrared dichroism and birefringence. 相似文献
The reorientational dynamics of dipoles in a series of blends of Polyethylene Glycol (PEG) and poly(amidoamine) (PAMAM) dendrimers were investigated by broadband dielectric relaxation spectroscopy (DRS). Measurements were performed over a wide range of frequency and temperature. Neat PEG exhibits three relaxation processes: the segmental process in the amorphous phase and two faster processes due to the localized motions in the amorphous regions and the rotation of hydroxyl end groups. Addition of dendrimers to the PEG matrix slows down the segmental process in the amorphous phase, but has no effect on the relaxation time of local processes in PEG. However, H-bonding which forms between the PEG oxygen and the amino groups on dendrimer surface is responsible for a shift of local processes in dendrimers to lower frequency. A detail analysis of the effect of temperature, concentration of dendrimers and molecular weight of PEG on the relaxation dynamics is offered. 相似文献
A novel capacitor with high dielectric constant (ε) has been developed by blending poly(vinylidene fluoride) (PVDF) with polyamide (PA11). The blends show high dielectric constants (εblend = 40), which give better frequency stability (1 MHz), and excellent mechanical properties. Based on certain volume fractions, the measured dielectric constants (ε blend ) were found to exceed those of the corresponding polymers, in contrasted to conventional composites, where εpolymerA < εcomposite < εpolymerB. SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial polymer‐polymer interactions. DSC and XRD demonstrate that blending PA11 with PVDF affects the crystalline behavior of each component. However, the PA11/PVDF blends exhibit a slightly high dielectric loss (tanδ ≈ 0.17), which is a great disadvantage to a capacitor. Adding a copolymer of styrene and maleic anhydride decreased the dielectric loss (tanδ ≈ 0.057) and increased the dielectric constant (εblend = 60). Our findings suggest that the high‐ε polymeric blends created represent a novel type of material that is flexible and easy to process, of relatively high dielectric constant, of high breakdown strength and, moreover, is suited to applications in flexible electronics.