首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We investigate a series of poly(amidoamine) starburst dendrimers (PAMAM) of different generations in acidic, aqueous solutions using small-angle neutron scattering (SANS). While the overall molecular size is found to be practically unaffected by a pD change, a strong generational dependence of counterion association is revealed. Upon increasing the dendrimer generation, the effective charge obtained from our SANS experiments only shows a small increase in contrast to the nearly exponential increase predicted by a recent atomic simulation. We also find that with the same degree of molecular protonation the specific counterion association, which is defined as the ratio of bound chloride anions to positively charged amines in solutions, is larger for higher-generation PAMAM dendrimer. The associated counterion density also increases upon increasing generation number.  相似文献   

2.
Desai A  Shi X  Baker JR 《Electrophoresis》2008,29(2):510-515
Various generations (G1-G8) of negatively charged poly(amidoamine) (PAMAM) succinamic acid dendrimers (PAMAM-SAH) were analyzed by CE using a poly(vinyl alcohol)-coated capillary. Due to its excellent stability and osmotic flow-shielding effect, highly reproducible migration times were achieved for all generations of dendrimer (e.g., RSD for the migration times of G5 dendrimer was 0.6%). We also observed a reverse trend in migration times for the PAMAM-SAH dendrimers (i.e., higher generations migrated faster than lower generation dendrimers) compared to amine-terminated PAMAM dendrimers reported in the literature. This reversal in migration times was attributed to the difference in counterion binding around these negatively charged dendrimers. This reverse trend allowed a generational separation for lower generation (G1-G3) dendrimers. However, a sufficient resolution for the migration peaks of higher generations (G4-G5) in a mixture could not be achieved. This could be due to their nearly identical charge/mass ratio and dense molecular conformations. In addition, we show that dye-functionalized PAMAM-SAH dendrimers can also be analyzed with high reproducibility using this method.  相似文献   

3.
Atomistic molecular dynamics (MD) simulations and contrast variation small angle neutron scattering (SANS) have been combined to investigate the Generation-5 polyelectrolyte polyamidoamine starburst dendrimer. This work reveals the dendrimer conformational dependence on counterion association at different levels of molecular charge. The accuracy of the simulations is verified through satisfactory comparison between modeled results, such as excess intra-dendrimer scattering length density distribution and hydration level, and their experimental counterparts. While the counterion distributions are not directly measureable with SANS, the spatial distribution of the counterions and their dendrimer association are extracted from the validated MD equilibrium trajectories. It is found that the conformation of the charged dendrimer is strongly dependent on the counterion association. Sensitivity of the distribution of counterions around charged amines to the counterion valency is qualitatively explained by adopting Langmuir adsorption theory. Moreover, via extending the concept of electrical double layer for compact charged colloids, we define an effective radius of a charged dendrimer including the spatial distribution of counterions in its vicinity. Within the same framework, the correlation between the strength of intra-dendrimer electrostatic repulsion and the counterion valency and dynamics is also addressed.  相似文献   

4.
Nanoscale protein pores modified with PAMAM dendrimers   总被引:1,自引:0,他引:1  
We describe nanoscale protein pores modified with a single hyperbranched dendrimer molecule inside the channel lumen. Sulfhydryl-reactive polyamido amine (PAMAM) dendrimers of generations 2, 3 and 5 were synthesized, chemically characterized, and reacted with engineered cysteine residues in the transmembrane pore alpha-hemolysin. Successful coupling was monitored using an electrophoretic mobility shift assay. The results indicate that G2 and G3 but not G5 dendrimers permeated through the 2.9 nm cis entrance to couple inside the pore. The defined molecular weight cutoff for the passage of hyperbranched PAMAM polymers is in contrast to the less restricted accessibility of flexible linear poly(ethylene glycol) polymers of comparable hydrodynamic volume. Their higher compactness makes sulfhydryl-reactive PAMAM dendrimers promising research reagents to probe the structure of porous membrane proteins with wide internal diameters. The conductance properties of PAMAM-modified proteins pores were characterized with single-channel current recordings. A G3 dendrimer molecule in the channel lumen reduced the ionic current by 45%, indicating that the hyperbranched and positively charged polymer blocked the passage of ions through the pore. In line with expectations, a smaller and less dense G2 dendrimer led to a less pronounced current reduction of 25%. Comparisons to recordings of PEG-modified pores revealed striking dissimilarities, suggesting that differences in the structural dynamics of flexible linear polymers vs compact dendrimers can be observed at the single-molecule level. Current recordings also revealed that dendrimers functioned as ion-selectivity filters and molecular sieves for the controlled passage of molecules. The alteration of pore properties with charged and hyperbranched dendrimers is a new approach and might be extended to inorganic nanopores with applications in sensing and separation technology.  相似文献   

5.
Poly(amidoamine) (PAMAM) dendrimer-based nanodevices are of recent interest in targeted cancer therapy. Characterization of mono- and multifunctional PAMAM-based nanodevices remains a great challenge because of their molecular complexity. In this work, various mono- and multifunctional nanodevices based on PAMAM G5 (generation 5) dendrimer were characterized by UV-Vis spectrometry, (1)H NMR, size exclusion chromatography (SEC), and capillary electrophoresis (CE). CE was extensively utilized to measure the molecular heterogeneity of these PAMAM-based nanodevices. G5-FA (FA denotes folic acid) conjugates (synthesized from amine-terminated G5.NH(2) dendrimer, approach 1) with acetamide and amine termini exhibit bimodal or multi-modal distributions. In contrast, G5-FA and bifunctional G5-FA-MTX (MTX denotes methotrexate) conjugates with hydroxyl termini display a single modal distribution. Multifunctional G5.Ac(n)-FI-FA, G5.Ac(n)-FA-OH-MTX, and G5.Ac(n)-FI-FA-OH-MTX (Ac denotes acetamide; FI denotes fluorescein) nanodevices (synthesized from partially acetylated G5 dendrimer, approach 2) exhibit a monodisperse distribution. It indicates that the molecular distribution of PAMAM conjugates largely depends on the homogeneity of starting materials, the synthetic approaches, and the final functionalization steps. Hydroxylation functionalization of dendrimers masks the dispersity of the final PAMAM nanodevices in both synthetic approaches. The applied CE analysis of mono- and multifunctional PAMAM-based nanodevices provides a powerful tool to evaluate the molecular heterogeneity of complex dendrimer conjugate nanodevices for targeted cancer therapeutics.  相似文献   

6.
Aqueous solution diffusion coefficients for G0–G3 PAMAM dendrimers were determined from DOSY-NMR spectroscopy at high and neutral pH. The study was performed in a dilute regime and diffusion coefficients at infinite dilution (D 0) were estimated from the variation of diffusion coefficients with dendrimer concentration. Hydrodynamic radii (R h) for each dendrimer were estimated from D 0 using the Stoke–Einstein relationship at both pH. According to D 0 and R h values, the structure of G0–G1 PAMAM dendrimers is almost insensitive to pH variations, whereas G2–G3 PAMAM dendrimers undergo swelling at neutral pH, due to surface amino groups protonation. Experimental diffusion coefficients show a scaling trend with the number of dendrimer atoms (N), with scaling laws of the type D0 μ Na D_{0} \propto N^{\alpha } , where α takes values of −0.39 and −0.50 at pH 12 and 7, respectively. For the first time, experimental data accounts for the scaling behavior of aqueous diffusion coefficients for low generation PAMAM dendrimers, as previously reported from molecular dynamics simulations.  相似文献   

7.
Generation 5 ethylenediamine (EDA)-cored poly(amidoamine) (PAMAM) dendrimers (E5, E denotes the EDA core and 5 the generation number) with different degrees of acetylation and carboxylation were synthesized and used as a model system to investigate the effect of charge and the influence of dendrimer surface modifications on electrophoretic mobility (EM) and molecular distribution. The surface-modified dendrimers were characterized by size-exclusion chromatography, 1H NMR, MALDI-TOF-MS, PAGE, and CE. The focus of our study was to determine how EM changes as a function of particle charge and molecular mass, and how the molecular distribution changes due to surface modifications. We demonstrate that partially modified dendrimers have much broader migration peaks than those of fully surface functionalized or unmodified E5 dendrimers due to variations in the substitution of individual dendrimer surfaces. EM decreased nonlinearly with increases in surface acetylation for both PAMAM acetamides and PAMAM succinamic acids, indicating a complex migration activity in CE separations that is not solely due to charge/mass ratio changes. These studies provide new insights into dendrimer properties under an electric field, as well as into the characterization of dendrimer-based materials being developed for medical applications.  相似文献   

8.
PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5 nm in diameter were prepared using H2 as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.  相似文献   

9.
In this study we extend our previous work in the self-organization of dendrimer polyelectrolytes (Macromolecules, 2008 , 41, 225) by examining the effects of dendrimer concentration and/or total volume fraction in the ordering process and the resulting structure, in the arrangement of counterions and dendrimer beads and in the diffusive motion of dendrimers at different strengths of Coulombic interactions. It is found that as long as the total volume fraction remains low (i.e. no jamming phenomena intervene) the symmetry of the resulted cubic phases is unaltered. At a higher volume fraction and at the strong electrostatic regime a kinetic arrest of the dendrimer molecules much in analogy to a colloidal glass-like transition is observed, inhibiting thus the ordering process. Changes in the strength of electrostatic interactions and dendrimer concentration induces a systematic variation of the counterion - counterion and the counterion - charged-dendrimer-bead spatial arrangement. These findings are in qualitative agreement with previous studies in systems with very different structural details of the considered solutes, indicating a more general behaviour in charged macroion/counterion solutions.  相似文献   

10.
Gn (n = 3, 4, and 5) poly(amidoamine) (PAMAM) dendrimers were synthesized and peripherally modified with photocleavable o‐nitrobenzyl (NB) groups by reacting o‐nitrobenzaldehyde with the terminal amine groups of PAMAM dendrimers, followed by reducing the imine to amine groups with NaBH4. The NB‐modified dendrimers, Gn‐NB (n = 3, 4, and 5), were characterized by nuclear magnetic resonance and fourier transform infrared spectroscopy. The results showed that the NB groups were successfully attached on the periphery of the dendrimers with near 100% grafting efficiency. Such a photosensitive NB shell could be cut off on irradiation with 365 nm ultraviolet (UV) light. The encapsulation and release of guest molecules, that is, salicylic acid (SA) and adriamycin (ADR), by Gn‐NB were explored. The encapsulation capability of these dendrimers was found to increase as the guest molecular size was decreased and have dependence on the generation of dendrimers as well. For both of SA and ADR, the average encapsulation numbers per dendrimer decreased in the order of G4‐NB > G5‐NB > G3‐NB, indicating that the fourth generation dendrimer was a better container for the guest molecules. The rate of SA release was found to be greater with UV irradiation than that without, suggesting that the NB‐shelled PAMMAM dendrimers could function as a molecular container/box with photoresponsive characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 551–557, 2010  相似文献   

11.
Polymeric membranes comprised of poly(amidoamine) (PAMAM) dendrimer immobilized in a poly(ethylene glycol) (PEG) network exhibit an excellent CO2 separation selectivity over H2. The CO2 permeability increases with PAMAM dendrimer concentration in the polymeric membrane and becomes 500 times greater than H2 permeability when the dendrimer content was 50 wt % at ambient conditions (5 kPa of CO2 partial pressure). However, the detailed morphology of the membrane has not been discussed. The immiscibility of PAMAM dendrimer and PEG matrix results in phase separation, which takes place in a couple of microns scale. Especially, laser scanning confocal microscope captures a 3D morphology of the polymeric blend. The obtained 3D reconstructions demonstrate a bicontinuous structure of PAMAM dendrimer‐rich and PEG‐rich phases, which indicates the presence of PAMAM dendrimer channel penetrating the polymeric membrane, and CO2 will preferentially pass through the dendrimer channel. In addition, Fourier transform of the 3D reconstructions indicates the presence of a periodic structure. An average size of the dendrimer domain calculated is 2–4 μm in proportion to PAMAM dendrimer concentration. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Ions derived from negative electrospray ionization of polyamidoamine (PAMAM) dendrimer generation 0.5 were subjected to ion trap tandem mass spectrometry. Ion/ion proton transfer reactions were used to manipulate the charge states of PAMAM precursor ions to form lower charge states from those initially formed by electrospray, as well as to facilitate the interpretation of the product ion mass spectra. Most of the products derived from dendrimer precursor ions could be rationalized by retro-Michael decomposition reactions. The dominant fragmentation channels are highly dependent on the composition of the counter-ions, which in this case are restricted to different numbers of sodium ions and protons, and whether the precursor ion is multiply charged or singly charged. An interpretation is given that is consistent with all of the observations made with the various anions associated with this study. The nature of the structural information that can be obtained via ion trap tandem mass spectrometry of the dendrimers is dependent on the types of precursor ions subjected to study. The tandem mass spectrometry data also provided information about the structure of faulty synthesis products present in the PAMAM dendrimer sample.  相似文献   

13.
Poly(amidoamine) (PAMAM) dendrimers were shown to adsorb strongly on negatively charged latex particles, and their effect on the particle charge and aggregation behavior was investigated by light scattering and electrophoretic mobility measurements. Time-resolved simultaneous static and dynamic light scattering was used to measure absolute aggregation rate constants. With increasing dendrimer dose, the overall charge could be tuned from negative to positive values through the isoelectric point (IEP). The aggregation is fast near the IEP and slows down further away. With decreasing ionic strength, the region of fast aggregation narrows and the dependence of the aggregation rate on the dendrimer dose is more pronounced. Surface charge heterogeneities become important for higher dendrimer generations. They widen the fast aggregation region, reduce the dependence of the aggregation rate on the dendrimer dose, and lead to an acceleration of the rate in the fast aggregation regime near the IEP. The ratio of the dendrimer charge and the particle charge exceeds the stoichiometric ratio of unity substantially and further increases with increasing generation. The tentative interpretation of such superstoichiometric charge neutralization involves coadsorption of anions and the finite thickness of the adsorbed dendrimer layer.  相似文献   

14.
细胞膜仿生修饰树枝状聚酰胺-胺的研究   总被引:1,自引:1,他引:1  
贾兰  徐建平  计剑  沈家骢 《高分子学报》2008,(11):1108-1112
利用2-丙烯酰氧基乙基磷酸胆碱的双键与树枝状聚酰胺-胺表面的氨基进行Michael加成反应,实现树枝状聚酰胺-胺表面的磷酸胆碱仿生修饰,修饰过程用FTIR、1H-NMR进行了表征.体外细胞活性测定和细胞形貌观察证实磷酸胆碱仿生修饰有效地改善了聚酰胺-胺树枝状聚合物的生物相容性;修饰后的聚酰胺-胺树枝状聚合物表面剩余的氨基仍然可以有效的与DNA复合,有可能作为一种潜在的基因载体得到广泛应用.  相似文献   

15.
CdS半导体纳米簇具有独特的光、电性能, 如何制备均匀分散的、能够稳定存在的CdS纳米簇是目前的研究热点之一. 以聚酰胺-胺(PAMAM)树形分子为模板, 原位合成了CdS纳米簇. 首先用UV-Vis分光光度法研究了与树形分子的配位机理, 得出G4.5和G5.0的平均饱和配位数分别为16和34, 并发现在G4.5PAMAM树形分子中Cd2+主要与最外层叔胺基配位, 在G5.0PAMAM树形分子中Cd2+主要与最外层伯胺基配位. 酯端基的G4.5的模板作用要明显优于胺端基的G5.0. 通过改变Cd2+与G4.5树形分子的摩尔比可以得到不同粒径的CdS纳米簇. 溶液的pH值对CdS纳米簇影响很大, pH在7.0左右制备的CdS纳米簇粒径小而均匀, 且溶液稳定性高. 用UV-Vis分光光度计和TEM对CdS纳米簇的大小和形貌进行了表征. 结果表明TEM观测CdS纳米簇的粒径要大于用Brus公式的估算值.  相似文献   

16.
The effect of PAMAM dendrimers (generations G3, G4 and G5) on the fibrillation of α‐synuclein was examined by fluorescence and CD spectroscopy, TEM and SANS. PAMAM dendrimers inhibited fibrillation of α‐synuclein and this effect increased both with generation number and PAMAM concentration. SANS showed structural changes in the formed aggregates of α‐synuclein – from cylindrical to dense three‐dimensional ones – as the PAMAM concentration increased, on account of the inhibitory effect. PAMAM also effectively promoted the breaking down of pre‐existing fibrils of α‐synuclein. In both processes – that is, inhibition and disassociation of fibrils – PAMAM redirected α‐synuclein to an amorphous aggregation pathway.

  相似文献   


17.
The synthesis of a generation 5 (G5) poly(amidoamine) (PAMAM) dendrimer platform having cyclooctyne ligands that were subsequently be used for a copper-free Huisgen 1,3-dipolar cycloaddition (click reaction) with azido modified methotrexate is described. The G5 PAMAM dendrimer was first partially (70%) acetylated and then coupled with 20 cyclooctyne ligands through amide bonds. The remaining primary amine groups on the dendrimer surface were neutralized by acetylation. The platform was then ‘clicked’ with different numbers (5, 10, and 17) of γ-azido functionalized methotrexate. The copper-free click reactions were stoichiometric with excellent yields.  相似文献   

18.
Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B3 (nicotinic acid), and B6 (pyridoxine) were monitored by 1H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Δδ) of the 1H chemical shift (δ) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical‐shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB‐G5‐64‐NH2, some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B6 indicates only dominant supramolecular hydrogen‐bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B3, a carboxylic acid, titration of DAB‐G3‐16‐NH2 shows that only six peripheral amino groups are protonated on average, even with excess vitamin B3, because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.  相似文献   

19.
We have performed approximately 20-40 ns of molecular dynamics (MD) simulations for the generation 8 PAMAM dendrimer in explicit water under varying pH conditions to study the structure of the dendrimer (approximately 156,738 atoms at low pH). This is the first report of such a long MD simulation of a larger generation PAMAM dendrimer including the effect of salt and counterions with explicit water molecules. We find that changing the pH from a high value (approximately 12) to a low value (approximately 3) changes the radius of gyration from Rg = 37.8 to 43.1 A (increasing by 13%). We also find significant back-folding of the primary amines and a large amount of water penetration inside the polymer. The increase in size with decrease in pH is consistent with our earlier studies on G3-G6 and agrees with the Monte Carlo theory by Welch and Muthukumar of G8 (Macromolecules, 1998, 31, 5892) and the experiments on G5 and G8 PAMAM dendrimer by Topp et al. (Macromolecules, 1999, 32, 7232). However, these results disagree dramatically with the interpretations of SANS experiments of G8 PAMAM dendrimers by Nisato et al. (Macromolecules, 2000, 33, 4172) who observe no change in the size of the dendrimer with variations of solution pH and ionic strength. We assume that the disagreement might arise from neglecting nonspherical shape, penetration of water and ions into the core, and aggregation, all of which might depend on pH.  相似文献   

20.
本文以聚酰胺-胺(PAMAM)树形分子为模板,原位制备AgI纳米簇.系统地研究了AgI纳米簇制备过程中各种反应条件如树形分子端基、反应时间、Ag+与PAMAM摩尔比等对AgI纳米簇粒径的影响,分别用紫外-可见光谱、荧光光谱、透射电镜等对所制备的纳米簇进行表征.在相同的条件下,以G4.5-COOH3为模板较以G5.0-NH2为模板制备的AgI纳米簇粒径小、分布均匀,这主要取决于G4.5-COOCH3PAMAM树形分子所起的“内模板”作用.G4.5-COOH3树形分子浓度为1×10-5mol/L,Ag+与树形分子摩尔比为30:1时所制备的AgI纳米簇的粒径分布均匀、稳定性好,室温避光可稳定存在两个月以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号