首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.  相似文献   

2.
The Arabian desert is rich in different species of medicinal plants, which approved variable antimicrobial activities. Phoenix dactylifera L. is one of the medical trees rich in phenolic acids and flavonoids. The current study aimed to assess the antibacterial and antifungal properties of the silver nanoparticles (AgNPs) green-synthesized by two preparations (ethanolic and water extracts) from palm leaves. The characteristics of the produced AgNPs were tested by UV-visible spectroscopy and Transmitted Electron Microscopy (TEM). The antifungal activity of Phoenix dactylifera L. was tested against different species of Candida. Moreover, its antibacterial activity was evaluated against two Gram-positive and two Gram-negative strains. The results showed that AgNPs had a spherical larger shape than the crude extracts. AgNPs, from both preparations, had significant antimicrobial effects. The water extract had slightly higher antimicrobial activity than the ethanolic extract, as it induced more inhibitory effects against all species. That suggests the possible use of palm leaf extracts against different pathogenic bacteria and fungi instead of chemical compounds, which had economic and health benefits.  相似文献   

3.
Antibiotic resistance rate is rising worldwide. Silver nanoparticles (AgNPs) are potent for fighting antimicrobial resistance (AMR), independently or synergistically. The purpose of this study was to prepare AgNPs using wild ginger extracts and to evaluate the antibacterial efficacy of these AgNPs against multidrug-resistant (MDR) Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. AgNPs were synthesized using wild ginger extracts at room temperature through different parameters for optimization, i.e., pH and variable molar concentration. Synthesis of AgNPs was confirmed by UV/visible spectroscopy and further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy analysis (EDXA), and Fourier-transform infrared spectroscopy (FTIR). Disc and agar well diffusion techniques were utilized to determine the in vitro antibacterial activity of plant extracts and AgNPs. The surface plasmon resonance peaks in absorption spectra for silver suspension showed the absorption maxima in the range of 400–420 nm. Functional biomolecules such as N–H, C–H, O–H, C–O, and C–O–C were present in Zingiber zerumbet (Z. zerumbet) (aqueous and organic extracts) responsible for the AgNP formation characterized by FTIR. The crystalline structure of ZZAE-AgCl-NPs and ZZEE-AgCl-NPs was displayed in the XRD analysis. SEM analysis revealed the surface morphology. The EDXA analysis also confirmed the element of silver. It was revealed that AgNPs were seemingly spherical in morphology. The biosynthesized AgNPs exhibited complete antibacterial activity against the tested MDR bacterial strains. This study indicates that AgNPs of wild ginger extracts exhibit potent antibacterial activity against MDR bacterial strains.  相似文献   

4.
In the current study, the hepatoprotective activity of vanillic acid, silymarin, and vanillic acid-loaded silver nanoparticles (AgNPs) against CCl4-induced hepatotoxicity was tested in male rats for four weeks. Thirty male rats were divided into five groups (n = 6). The 1st group was a negative control, the 2nd group was a positive control, the 3rd group was treated with 100 mg/kg b.w. of vanillic acid, the 4th group was treated with 100 mg/kg b.w. of vanillic acid–AgNPs, and the 5th group was treated with 50 mg/kg b.w. of silymarin. The CCl4-induced hepatic toxicity in the 2nd group was revealed by the liver function and all other biochemical tests. Liver enzymes, bilirubin, lipid peroxidation, lactate dehydrogenase, and interleukin-6 were elevated, whereas, total protein, antioxidant enzymes, and irisin were decreased compared to the negative control. The hepatic tissues were also injured as a result of the CCl4-induced hepatotoxicity. Treating the hepatotoxic rats with vanillic acid moderately protected the rats of the 3rd group, whereas treatment with vanillic AgNPs and silymarin in G4 and G5, respectively, greatly protected the rats against the CCl4 hepatotoxicity, approaching the normal biochemical levels and liver tissue appearance. The biochemical tests were confirmed by the histological investigations of liver tissue.  相似文献   

5.
Green synthesis of silver nanoparticles (AgNPs) was synthesized from fresh garlic extract coupled with isoniazid hydrazide (INH), a commonly used antibiotic to treat tuberculosis. A molecular docking study conducted with the selected compounds compared with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis. The aqueous extract of garlic was prepared and mixed with silver nitrate (AgNO3) solution for the superfast synthesis of stable AgNPs. INH was then conjugated with AgNPs at different ratios (v/v) to obtain stable INH-AgNPs conjugates (AgNCs). The resulting AgNCs characterized by FTIR spectra revealed the ultrafast formation of AgNPs (<5 s) and perfectly conjugated with INH. The shifting of λmax to longer wavelength, as found from UV spectral analysis, confirmed the formation of AgNCs, among which ideal formulations (F7, F10, and F13) have been pre-selected. The zeta particle size (PS) and the zeta potential (ZP) of AgNPs were found to be 145.3 ± 2.1 nm and −33.1 mV, respectively. These data were significantly different compared to that of AgNCs (160 ± 2.7 nm and −14.4 mV for F7; 208.9 ± 2.9 nm and −19.8 mV for F10; and 281.3 ± 3.6 nm and −19.5 mV for F13), most probably due to INH conjugation. The results of XRD, SEM and EDX confirmed the formation of AgNCs. From UV spectral analysis, EE of INH as 51.6 ± 5.21, 53.6 ± 6.88, and 70.01 ± 7.11 %, for F7, F10, and F13, respectively. The stability of the three formulations was confirmed in various physiological conditions. Drug was released in a sustainable fashion. Besides, from the preferred 23 compounds, five compounds namely Sativoside R2, Degalactotigonin, Proto-desgalactotigonin, Eruboside B and Sativoside R1 showed a better docking score than trpD, and therefore may help in promoting anti-tubercular activity.  相似文献   

6.
Green methods using biological extracts, in particular plant-based solutions, have shown great potential for silver nanoparticle synthesis. A microwave-assisted single-step phytosynthesis of silver nanoparticles is described in the present study. The aqueous extract obtained from the Rosa santana (rose) petals was used for the first time in the synthesis. The synthesized nanoparticles obtained after optimized microwave conditions for time and temperature were analyzed by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta-size analysis. The results obtained from the characterization studies showed that the synthesized nanoparticles were nearly spherical in shape with sizes from 6.52?nm to 25.24?nm with an average particle size of 14.48?nm with a face-centered cubic structure. The antibacterial activities of the synthesized nanoparticles were evaluated and revealed that the silver nanoparticles displayed good inhibition against both Gram-negative and Gram-positive bacteria. Also, the cytotoxic effect of the silver nanoparticles on a mouse fibroblast cell line (L929) was studied by a cell viability assay. The results showed that phytosynthesized silver nanoparticles were nontoxic to the healthy normal cell line at all tested concentrations.  相似文献   

7.
A green method using Juglans regia bark extract was used to synthesize silver nanoparticles at room temperature with monitoring by absorption spectroscopy. The size and shape of the synthesized nanoparticles were characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and small-angle X-ray scattering. The average particle size was from 10 to 30?nm. Gas chromatography–mass spectrometry (GC–MS) was used for the separation, identification, and quantification of components of the plant extracts. A possible mechanism for the synthesis of nanoparticles was elucidated based on the GC–MS results. The synthesized silver nanoparticles showed effective inhibition against Streptococcus mutans, which is the main causative agent for dental caries. The nanoparticles also showed promising antibiofilm activity by inhibiting the glucosyltransferase enzyme.  相似文献   

8.
Plants are a treasure trove of several important phytochemicals that are endowed with therapeutic and medicinal properties. Ribes rubrum L. (red currants) are seasonal berries that are widely consumed for their nutritional value and are known for their health benefits. Red currants are a rich source of secondary metabolites such as polyphenols, tocopherols, phenolic acids, ascorbic acid, and flavonoids. In this study, sunlight-mediated synthesis of silver nanoparticles (AgNPs) was successfully accomplished within 9 min after adding the silver nitrate solution to the aqueous extract of red currant. The synthesised AgNPs were characterised with UV–Vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectrum (FTIR), and energy-dispersive X-ray spectrum (EDX). The efficacy of aqueous extracts of red currants and AgNPs in controlling the growth of some pathogenic fungi and bacteria was also investigated. The UV–visible (UV–Vis) spectrum displayed an absorption peak at 435 nm, which corresponded to the surface plasmon band. The strong silver signal on the EDX spectrum at 3 keV, authenticated the formation of AgNPs. The several peaks on the FTIR spectrum of the aqueous extract of red currant and the nanoparticles indicated the presence of some important functional groups such as amines, carbonyl compounds, and phenols that are vital in facilitating the process of capping and bioreduction, besides conferring stability to nanoparticles. The TEM microphotographs showed that the nanoparticles were well dispersed, roughly spherical, and the size of the nanoparticles ranged from 8 to 59 nm. The red currant silver nanoparticles were highly potent in inhibiting the growth and proliferation of some fungal and bacterial test isolates, especially Alternaria alternata, Colletotrichum musae, and Trichoderma harzianum. Based on the robust antifungal and antibacterial activity demonstrated in this study, red currant nanoparticles can be investigated as potential replacements for synthetic fungicides and antibiotics.  相似文献   

9.
10.
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号