首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Olives (Olea europaea L.) are a significant part of the agroindustry in China. Olive leaves, the most abundant by-products of the olive and olive oil industry, contain bioactive compounds that are beneficial to human health. The purpose of this study was to evaluate the phytochemical profiles and antioxidant capacities of olive leaves from 32 cultivars grown in China. A total of 32 phytochemical compounds were identified using high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry, including 17 flavonoids, five iridoids, two hydroxycinnamic acids, six triterpenic acids, one simple phenol, and one coumarin. Specifically, olive leaves were found to be excellent sources of flavonoids (4.92–18.29 mg/g dw), iridoids (5.75–33.73 mg/g dw), and triterpenic acids (15.72–35.75 mg/g dw), and considerable variations in phytochemical content were detected among the different cultivars. All tested cultivars were classified into three categories according to their oil contents for further comparative phytochemicals assessment. Principal component analysis indicated that the investigated olive cultivars could be distinguished based upon their phytochemical profiles and antioxidant capacities. The olive leaves obtained from the low-oil-content (<16%) cultivars exhibited higher levels of glycosylated flavonoids and iridoids, while those obtained from high-oil-content (>20%) cultivars contained mainly triterpenic acids in their compositions. Correspondingly, the low-oil-content cultivars (OL3, Frantoio selection and OL14, Huaou 5) exhibited the highest ABTS antioxidant activities (758.01 ± 16.54 and 710.64 ± 14.58 mg TE/g dw, respectively), and OL9 (Olea europaea subsp. Cuspidata isolate Yunnan) and OL3 exhibited the highest ferric reducing/antioxidant power assay values (1228.29 ± 23.95 mg TE/g dw and 1099.99 ± 14.30 mg TE/g dw, respectively). The results from this study may be beneficial to the comprehensive evaluation and utilization of bioactive compounds in olive leaves.  相似文献   

3.
Coffee is one of the most often consumed beverages almost all over the world. The multiplicity of beans, as well as the methods and parameters used to brew, encourages the optimization of the brewing process. The study aimed to analyze the effect of roasting beans, the brewing technique, and its parameters (time and water temperature) on antioxidant activity (determined using several in vitro methods), total polyphenols, flavonoids, and caffeine content. The infusions of unroasted and roasted Arabica beans from Brazil, Colombia, India, Peru, and Rwanda were analyzed. In general, infusions prepared from roasted beans had higher antioxidant activity and the content of above-mentioned compounds. The hot brew method was used to obtain infusions with a higher antioxidant activity, while the cold brew with higher caffeine content. The phenolic compound content in infusions prepared using both techniques depended on the roasting process. Moreover, the bean’s origin, roasting process, and brewing technique had a significant effect on the tested properties, in contrary to brewing time and water temperature (below and above 90 °C), which had less impact. The results confirm the importance of coffee brewing optimization.  相似文献   

4.
Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.  相似文献   

5.
Alternative technologies, which have been developed in order to meet the consumers’ demand for nourishing and healthy meat and meat products, are followed by the food industry. In the present study, it was determined, using the HPLC method, that green tea contains a high level of epicatechin (EP) under optimal conditions and that pomegranate peel contains a high level of punicalagin (PN). Green tea, pomegranate peel, EP and PN were added to meatballs at different concentrations in eight groups. The antioxidant capacities of extracts were measured. The antimicrobial activity was examined for 72 h using three different food pathogens. The highest level of antimicrobial activity was achieved in the 1% punicalagin group, whereas the minimum inhibition concentration (L. monocytogenes, S. typhimurium) was found to be 1.87 mg/mL. A statistically significant decrease was found in FFA, POV and TBARS levels of meatballs on different days of storage (p < 0.05). When compared to the control group, the bioactive compounds preserved the microbiological and chemical properties of meatballs during storage at +4 °C (14 days). It was concluded that the extracts with high EP and PN concentrations can be used as bio-preservative agents for meat and meat products.  相似文献   

6.
《Analytical letters》2012,45(18):2986-3003
Abstract

The concentration and antioxidant activity of the known phenolics macluraxanthone, rutin, chlorogenic acid, and psoralen present in M. pomifera, F. carica, and F. elastica extracts were determined to evaluate the plant extracts potency as new antioxidant suppliers.

The quantification of the compounds was obtained by HPLC-DAD. The antioxidant activity of plant extracts and compounds was evaluated using DPPH and ABTS methods. The results seem to indicate that these extracts can be promising as new antioxidant suppliers, particularly F. carica and F. elastica leaves because only about 30% and about 50%, respectively, of the total activity was due to the phenolics determined.  相似文献   

7.
Coffee bean bagasse is one of the main by-products generated by industrial coffee production. This by-product is rich in bioactive compounds such as caffeine, caffeic and chlorogenic acid, and other phenols. The aims of this work are to optimize the extraction conditions of phenolic compounds present in coffee bean bagasse and incorporate them into stout-style craft beers, as well as to determine their effect on the phenol content and antioxidant capacity. The optimal conditions for extraction were 30% ethanol, 30 °C temperature, 17.5 mL of solvent per gram of dry sample, and 30 min of sonication time. These conditions presented a total phenol content of 115.42 ± 1.04 mg GAE/g dry weight (DW), in addition to an antioxidant capacity of 39.64 ± 2.65 μMol TE/g DW in DPPH and 55.51 ± 6.66 μMol TE/g DW for FRAP. Caffeine, caffeic and chlorogenic acids, and other minor compounds were quantified using HPLC-DAD. The coffee bean bagasse extracts were added to the stout craft beer and increased the concentration of phenolic compounds and antioxidant capacity of the beer. This work is the first report of the use of this by-product added to beers.  相似文献   

8.
The phytochemical analysis of Vinca minor, V. herbacea, V. major, and V. major var. variegata leaf extracts showed species-dependent antioxidant, antibacterial, and cytotoxic effects correlated with the identified phytoconstituents. Vincamine was present in V. minor, V. major, and V. major var. variegata, while V. minor had the richest alkaloid content, followed by V. herbacea. V. major var. variegata was richest in flavonoids and the highest total phenolic content was found in V. herbacea which also had elevated levels of rutin. Consequently, V. herbacea had the highest antioxidant activity followed by V. major var. variegata. Whereas, the lowest one was of V. major. The V. minor extract showed the most efficient inhibitory effect against both Staphylococcus aureus and E. coli. On the other hand, V. herbacea had a good anti-bacterial potential only against S. aureus, which was most affected at morphological levels, as indicated by scanning electron microscopy. The Vinca extracts acted in a dose-depended manner against HaCaT keratinocytes and A375 melanoma cells and moreover, with effects on the ultrastructure, nitric oxide concentration, and lactate dehydrogenase release. Therefore, the Vinca species could be exploited further for the development of alternative treatments in bacterial infections or as anticancer adjuvants.  相似文献   

9.
Traditionally, the supplement of organic manure in tea plantations has been a common approach to improving soil fertility and promoting terroir compounds, as manifested by the coordinated increase in yield and quality for the resulting teas. However, information regarding the effect of organic manure in the metabolome of tea plants is still inadequate. The metabolite profiles of tea shoots applied with cow manure, urea or no fertilizer were studied using gas chromatography–mass spectrometry (GC–MS). In total, 73 metabolites were detected, and the modulated metabolites included mainly amino acids, organic acids and fatty acids. In particular, glutamine, quinic acid and proline accumulated more in tea shoots in soils treated with cow manure, but octadecanoic acid, hexadecanoic acid and eicosanoic acid were drastically reduced. Pearson correlation analysis indicated that organic acids and amino acids in tea shoots were the two major metabolite groups among the three treatments. The analysis of metabolic pathways demonstrated that the cow manure treatment significantly changed the enrichment of pathways related to amino acids, sugars and fatty acids. Sensory evaluation showed that the quality of green teas was higher when the plants used to make the tea were grown in soil treated with cow manure rather than urea during spring and late summer. The results indicated that the application of cow manure in soils changed the metabolic characteristics of tea shoots and improved the qualities of the resulting teas.  相似文献   

10.
Scientists intensely search for new sources of antioxidants, perceived as important health-promoting agents. Some species of the large genus Centaurea provide raw materials for the pharmaceutical and cosmetic industries, as well as produce edible flowers. This is the first study that determines the content of total polyphenols, flavonoids, reducing sugars, free amino acids and the antioxidant potential in the flower extracts of C. nigra L., C. orientalis L. and C. phrygia L. The total polyphenol and flavonoid content is the highest in the extract of C. orientalis, and the lowest in that of C. phrygia. Similarly, C. orientalis shows the greatest scavenging activity on DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS [2,2′-azobis(3-ethylbenzothiazoline-6-sulfonate)] and Fe3+ reducing power assays, whereas the lowest activity is found for C. phrygia. The highest content of reducing sugars is found in C. nigra, while C. orientalis has the highest levels of free amino acids. We find a strong positive correlation between total phenolics and flavonoids and the antioxidant capacity of all three Centaurea species. Moreover, the content of free amino acids strongly and positively correlates with the levels of total phenolics and flavonoids, antioxidant activity assessed by DPPH and ABTS assays and Fe3+ reducing power. Summing up, C. orientalis exhibits the strongest antioxidant potential of the investigated Centaurea species. This species could potentially be a natural source of antioxidant substances for the pharmacy, cosmetics and food industries. The content of free amino acids may be used as a marker of the antioxidant status of Centaurea species.  相似文献   

11.
Natural products black cumin—Nigella sativa (N. sativa) and wild garlic—Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2′,7′-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.  相似文献   

12.
The aim of this paper was to determine the effect of the hydrolysis method on the amounts of phenolic compounds in the plant material in soil and, as a consequence, on the parameters to determine the degree of lignins transformation in soils. The study included the plant material (hay, sward, and roots) and soil—Albic Brunic Arenosol (horizon A, AE, and Bsv) samples. Phenolic compounds were isolated at two stages by applying acid hydrolysis followed by alkaline re-hydrolysis. The quantitative and qualitative analysis of phenolic compounds was performed with high-performance liquid chromatography with a DAD. The content of phenolic compounds in the extracts depended on the hydrolysis method and it was determined by the type of the research material. The amounts of phenolic compounds contained in the alkaline hydrolysates accounted for 55.7% (soil, horizon Bsv)—454% (roots) of their content in acid hydrolysates. In the extracts from acid hydrolysates, chlorogenic and p-hydroxybenzoic acids were dominant. In the alkaline extracts from the plant material, the highest content was recorded for p-coumaric and ferulic acids, and in the extracts from soil, ferulic and chlorogenic acids. A combination of acid and alkaline hydrolysis ensures the best extraction efficiency of insoluble-bound forms of polyphenols from plant and soil material.  相似文献   

13.
Oxidative stress is a key underlying factor in cognitive decline and atherosclerosis. Oxidative stress occurs at the cellular level with an imbalance between reactive oxygen species and reactive nitrogen species and a deficiency in antioxidants. Mounting evidence suggests that berry flavonoids may promote cellular health by exerting antioxidant properties. Black currant and various berry extracts were tested in microglia (BV-2) and cardiomyocyte (HL-1) cell lines to study their biological effects. The principal ingredients in black currant and cranberry extract–delphinidin 3-rutinoside (D3R) and cyanidin 3-glucoside (C3G), were also assessed. A menadione-induced oxidative stressor was used, and its output was quantified to detect oxidative stress (CellROXTM). Black currant extract had similar antioxidant effects as N-acetylcysteine (NAC) in HL-1 cells with regard to cellular protection, whereas cranberry extract was ineffective. In contrast, cranberry extract was comparable in effectiveness to black currant extract in BV-2 cells. D3R and C3G also reduced oxidative stress similarly to whole berry extracts, which indicates that these ingredients may confer the antioxidant effects of berries. Black currant and cranberry extracts inhibit oxidative stress in microglial and cardiomyocyte cell lines. Black currant extract was more effective in reducing oxidative stress in the HL-1 cells, whereas cranberry extract was comparable in reducing oxidative stress in the BV-2 cells. The results suggest that berry flavonoids exert neuro- and cardioprotective effects.  相似文献   

14.
The bearberry Arctostaphylos uva-ursi (L.) Spreng. has a long history of ethnopharmacological use. This species has been used in folk medicine for centuries as a rich source of raw material abundant in secondary metabolites and is important for medicinal and pharmacological purposes. The plant is a source of herbal material—Uvae ursi folium, which is highly valued and sought by pharmaceutical and cosmetic industries. The studied bearberry leaves can be classified as a suitable herbal material for use in pharmacy; therefore, the investigated populations can be a potentially valuable source of plant material for cultivation and can be used in in vitro cultures and in biotechnological processes. The objective of this study was to characterize the variability of the phytochemical composition and antioxidant activity of water and ethanol bearberry extracts from raw material collected from different natural populations. In each of the twelve A. uva-ursi sites, three leaf samples were collected and analyzed. The water extracts from bearberry leaves were characterized by similar concentration of arbutin (77.64–105.56 mg g−1) and a significantly higher concentration of hydroquinone (6.96–13.08 mg g−1) and corilagin (0.83–2.12 mg g−1) in comparison with the ethanol extracts −77.21–103.38 mg g−1, 10.55–16.72 mg g−1, 0.20–1.54 mg g−1, respectively. The concentration of other metabolites in the water extracts was significantly lower in comparison with the ethanol extracts. In the case of the water extracts, a significant effect of not only total phenolic compounds, but also hydroquinone on the antioxidant parameters, was observed, which indicates the solvent-related activity of these metabolites. Therefore, it is suggested that special attention should be paid to the concentration of not only arbutin, but also hydroquinone in Uvae ursi folium. The latter metabolite serving a very important function as an active bearberry ingredient should be controlled not only in alcoholic extracts but also in water extracts, since bearberry leaves are applied as infusions and decoctions. The results presented in this paper can contribute to appropriate selection of plant material for pharmaceutical, cosmetic, and food industries, with special emphasis on the antioxidant activity of different types of extracts.  相似文献   

15.
Phenolic compounds and thiamine may serve as therapies against oxidative stress-related neurodegenerative diseases. However, it is important to note that these components show high instability under changing conditions. The study’s aim was to determine the impact of the thiamine concentration (hydrochloride—TH and pyrophosphate—TP; in the range 0.02 to 20 mg/100 g on the indices of the chelating properties and reducing power, and free radicals scavenging indices of EGCG, EGC, ECG and caffeine added from 0.04 to 6.0 mg/100 g. Our research confirmed that higher concentrations of TH and TP can exhibit significant activity against the test antioxidant indices of all components. When above 5.0 mg/100 g of thiamine was used, the radical scavenging abilities of the compound decreased in the following order: EGCG > ECG > EGC > caffeine. The highest correlation was found for the concentration of thiamine pyrophosphate to 20.0 mg/100 g and EGCG. Knowledge of the impact of factors associated with the concentration of both EGCG, EGC, ECG or caffeine and thiamine on their activity could carry weight in regulating the quality supplemented foods, especially of nutrition support for people of all ages were oral, enteral tube feeding and parenteral nutrition).  相似文献   

16.
Camelina oil obtained from the seeds of Camelina sativa exhibits strong antioxidative properties. This study was based on four years of field experiments conducted on 63 genotypes of spring and 11 genotypes of winter camelina. The aim of the study was to determine the variability in the content of the selected bioactive compounds, depending on the weather conditions during the cultivation, the functional form, and genotype. The cultivation form of the genotypes analysed in our study did not exhibit significant differences in the quantitative profiles of the tested phenolic acids and flavonoids. Sinapic acid was the most abundant of all phenolic acids under analysis (617–668 mg/kg), while quercetin was the main flavonoid (91–161 mg/kg). Camelina has great potential not only for the food industry but also for researchers attempting to breed an oil plant with the stable biosynthesis of bioactive compounds to ensure oxidative protection of obtained fat.  相似文献   

17.
Wine lees, a sub-exploited byproduct of vinification, is considered a rich source of bioactive compounds, such as (poly)phenols, anthocyanins and tannins. Thus, the effective and rapid recovery of these biomolecules and the assessment of the bioactive properties of wine lees extracts is of utmost importance. Towards this direction, microwave-assisted extraction (MAE) factors (i.e., extraction time, microwave power and solvent/material ratio) were optimized using experimental design models in order to maximize the (poly)phenolic yield of the extracts. After optimizing the MAE process, the total phenolic content (TPC) as well as the antiradical, antioxidant and antimicrobial activity of the extracts were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR) was employed to investigate the chemical profile of wine lees extracts. Red varieties exhibited higher biological activity than white varieties. The geographical origin and fermentation stage were also considered as critical factors. The white variety Moschofilero presented the highest antioxidant, antiradical and antimicrobial activity, while Merlot and Agiorgitiko samples showed noteworthy activities among red varieties. Moreover, IR spectra confirmed the presence of sugars, amino acids, organic acids and aromatic compounds. Thus, an efficient, rapid and eco-friendly process was proposed for further valorization of wine lees extracts.  相似文献   

18.
The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.  相似文献   

19.
20.
Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号