首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a finite volume method for solving Hamilton-Jacobi-Bellman(HJB) equations governing a class of optimal feedback control problems. This method is based on a finite volume discretization in state space coupled with an upwind finite difference technique, and on an implicit backward Euler finite differencing in time, which is absolutely stable. It is shown that the system matrix of the resulting discrete equation is an M-matrix. To show the effectiveness of this approach, numerical experiments on test problems with up to three states and two control variables were performed. The numerical results show that the method yields accurate approximate solutions to both the control and the state variables.  相似文献   

2.
The electrical activity in the heart is governed by the bidomain equations. In this paper, we analyse an order optimal method for the algebraic equations arising from the discretization of this model. Our scheme is defined in terms of block Jacobi or block symmetric Gauss–Seidel preconditioners. Furthermore, each block in these methods is based on standard preconditioners for scalar elliptic or parabolic partial differential equations (PDEs). Such preconditioners can be realized in terms of multigrid or domain decomposition schemes, and are thus readily available by applying ‘off‐the‐shelves’ software. Finally, our theoretical findings are illuminated by a series of numerical experiments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

4.
In this article, we describe a discontinuous finite volume method with interpolated coefficients for the numerical approximation of the distributed optimal control problem governed by a class of semilinear elliptic equations with control constraints. The proposed distributed control problem involves three unknown variable: control, state and costate. For the approximation of control, we have adopted three different methodologies: variational discretization, piecewise constant and piecewise linear discretization, while the approximation of state and costate variables is based on discontinuous piecewise linear polynomials. As the resulted scheme is non‐symmetric, optimize‐then‐discretize approach is used to approximate the control problem. Optimal a priori error estimates in suitable natural norms for state, costate and control variables are derived. Moreover, numerical experiments are presented to support the derived theoretical results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2090–2113, 2017  相似文献   

5.
ABSTRACT

This study proposes new higher-order discretization methods of forward-backward stochastic differential equations. In the proposed methods, the forward component is discretized using the Kusuoka–Lyons–Ninomiya–Victoir scheme with discrete random variables and the backward component using a higher-order numerical integration method consistent with the discretization method of the forward component, by use of the tree based branching algorithm. The proposed methods are applied to the XVA pricing, in particular to the credit valuation adjustment. The numerical results show that the expected theoretical order and computational efficiency could be achieved.  相似文献   

6.
7.
Laurenz Göllmann  Daniela Kern  Helmut Maurer 《PAMM》2007,7(1):1151701-1151702
We consider retarded optimal control problems with constant delays in state and control variables under mixed controlstate inequality constraints. First order necessary optimality conditions in the form of Pontryagin's minimum principle are presented and discussed as well as numerical methods based upon discretization techniques and nonlinear programming. The minimum principle for the considered problem class leads to a boundary value problem which is retarded in the state dynamics and advanced in the costate dynamics. It can be shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Methodology for development of compact numerical schemes by the practical finite‐analytic method (PFAM) is presented for spatial and/or temporal solution of differential equations. The advantage and accuracy of this approach over the conventional numerical methods are demonstrated. In contrast to the tedious discretization schemes resulting from the original finite‐analytic solution methods, such as based on the separation of variables and Laplace transformation, the practical finite‐analytical method is proven to yield simple and convenient discretization schemes. This is accomplished by a special universal determinant construction procedure using the general multi‐variate power series solutions obtained directly from differential equations. This method allows for direct incorporation of the boundary conditions into the numerical discretization scheme in a consistent manner without requiring the use of artificial fixing methods and fictitious points, and yields effective numerical schemes which are operationally similar to the finite‐difference schemes. Consequently, the methods developed for numerical solution of the algebraic equations resulting from the finite‐difference schemes can be readily facilitated. Several applications are presented demonstrating the effect of the computational molecule, grid spacing, and boundary condition treatment on the numerical accuracy. The quality of the numerical solutions generated by the PFAM is shown to approach to the exact analytical solution at optimum grid spacing. It is concluded that the PFAM offers great potential for development of robust numerical schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

9.
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems. Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto [25], a residual based a posteriori error estimators for the state, co-state and control variables are derived. The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements, whereas the piecewise constant functions are employed for the control variable. The temporal discretization is based on the backward Euler method. We derive a posteriori error estimates for the state, co-state and control variables in the $L^\infty(0,T;L^2(\Omega))$-norm. Finally, a numerical experiment is performed to illustrate the performance of the derived estimators.  相似文献   

10.
Summary. Galerkin and weighted Galerkin methods are proposed for the numerical solution of parabolic partial differential equations where the diffusion coefficient takes different signs. The approach is based on a simultaneous discretization of space and time variables by using continuous finite element methods. Under some simple assumptions, error estimates and some numerical results for both Galerkin and weighted Galerkin methods are presented. Comparisons with the previous methods show that new methods not only can be used to solve a wider class of equations but also require less regularity for the solution and need fewer computations. Received March 3, 1995  相似文献   

11.
A primal interior point method for control constrained optimal control problems with PDE constraints is considered. Pointwise elimination of the control leads to a homotopy in the remaining state and dual variables, which is addressed by a short step pathfollowing method. The algorithm is applied to the continuous, infinite dimensional problem, where discretization is performed only in the innermost loop when solving linear equations. The a priori elimination of the least regular control permits to obtain the required accuracy with comparatively coarse meshes. Convergence of the method and discretization errors are studied, and the method is illustrated at two numerical examples. Supported by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin. This paper appeared as ZIB Report 04-38.  相似文献   

12.
Summary Numerical approximation of a parabolic control problem with a Neumann boundary condition control is considered. The observation is the final state. The numerical approximation is based on backward discretization with respect to time and a Galerkin method in the space variables. Optimal (except for a logarithmic term) L2 error estimates are derived for the optimal state. Certain error estimates for the optimal control are also given. Entrata in Redazione il 4 maggio 1977. This work was supported by the Norwegian Research Council for Science and the Humanities.  相似文献   

13.
Parametric nonlinear optimal control problems subject to control and state constraints are studied. Two discretization methods are discussed that transcribe optimal control problems into nonlinear programming problems for which SQP-methods provide efficient solution methods. It is shown that SQP-methods can be used also for a check of second-order sufficient conditions and for a postoptimal calculation of adjoint variables. In addition, SQP-methods lead to a robust computation of sensitivity differentials of optimal solutions with respect to perturbation parameters. Numerical sensitivity analysis is the basis for real-time control approximations of perturbed solutions which are obtained by evaluating a first-order Taylor expansion with respect to the parameter. The proposed numerical methods are illustrated by the optimal control of a low-thrust satellite transfer to geosynchronous orbit and a complex control problem from aquanautics. The examples illustrate the robustness, accuracy and efficiency of the proposed numerical algorithms.  相似文献   

14.
In this paper, we investigate the superconvergence of fully discrete splitting positive definite mixed finite element (MFE) methods for parabolic optimal control problems. For the space discretization, the state and co-state are approximated by the lowest order Raviart–Thomas MFE spaces and the control variable is approximated by piecewise constant functions. The time discretization of the state and co-state are based on finite difference methods. We derive the superconvergence between the projections of exact solutions and numerical solutions or the exact solutions and postprocessing numerical solutions for the control, state and co-state. A numerical example is provided to validate the theoretical results.  相似文献   

15.
We present an iterative domain decomposition method for the optimal control of systems governed by linear partial differential equations. The equations can be of elliptic, parabolic, or hyperbolic type. The space region supporting the partial differential equations is decomposed and the original global optimal control problem is reduced to a sequence of similar local optimal control problems set on the subdomains. The local problems communicate through transmission conditions, which take the form of carefully chosen boundary conditions on the interfaces between the subdomains. This domain decomposition method can be combined with any suitable numerical procedure to solve the local optimal control problems. We remark that it offers a good potential for using feedback laws (synthesis) in the case of time-dependent partial differential equations. A test problem for the wave equation is solved using this combination of synthesis and domain decomposition methods. Numerical results are presented and discussed. Details on discretization and implementation can be found in Ref. 1.  相似文献   

16.
A numerical scheme is developed to find optimal parameters and time step of m-stage Runge-Kutta (RK) schemes for accelerating the convergence to -steady-state solutions of hyperbolic equations. These optimal RK schemes can be applied to a spatial discretization over nonuniform grids such as Chebyshev spectral discretization. For each m given either a set of all eigenvalues or a geometric closure of all eigenvalues of the discretization matrix, a specially structured nonlinear minimax problem is formulated to find the optimal parameters and time step. It will be shown that each local solution of the minimax problem is also a global solution and therefore the obtained m-stage RK scheme is optimal. A numerical scheme based on a modified version of the projected Lagrangian method is designed to solve the nonlinear minimax problem. The scheme is generally applicable to any stage number m. Applications in solving nonsymmetric systems of linear equations are also discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
A method for the numerical solution of state-constrained optimal control problems subject to higher-index differential-algebraic equation (DAE) systems is introduced. For a broad and important class of DAE systems (semiexplicit systems with algebraic variables of different index), a direct multiple shooting method is developed. The multiple shooting method is based on the discretization of the optimal control problem and its transformation into a finite-dimensional nonlinear programming problem (NLP). Special attention is turned to the mandatory calculation of consistent initial values at the multiple shooting nodes within the iterative solution process of (NLP). Two different methods are proposed. The projection method guarantees consistency within each iteration, whereas the relaxation method achieves consistency only at an optimal solution. An illustrative example completes this article.  相似文献   

18.
This paper analyzes a parareal approach based on discontinuous Galerkin (DG) method for the time-dependent Stokes equations. A class of primal discontinuous Galerkin methods, namely variations of interior penalty methods, are adopted for the spatial discretization in the parareal algorithm (we call it parareal DG algorithm). We study three discontinuous Galerkin methods for the time-dependent Stokes equations, and the optimal continuous in time error estimates for the velocities and pressure are derived. Based on these error estimates, the proposed parareal DG algorithm is proved to be unconditionally stable and bounded by the error of discontinuous Galerkin discretization after a finite number of iterations. Finally, some numerical experiments are conducted which confirm our theoretical results, meanwhile, the efficiency of the parareal DG algorithm can be seen through a parallel experiment.  相似文献   

19.
A new discretization concept for optimal control problems with control constraints is introduced which utilizes for the discretization of the control variable the relation between adjoint state and control. Its key feature is not to discretize the space of admissible controls but to implicitly utilize the first order optimality conditions and the discretization of the state and adjoint equations for the discretization of the control. For discrete controls obtained in this way an optimal error estimate is proved. The application to control of elliptic equations is discussed. Finally it is shown that the new concept is numerically implementable with only slight increase in program management. A numerical test confirms the theoretical investigations.  相似文献   

20.
不可压缩流动的数值模拟是计算流体力学的重要组成部分. 基于有限元离散方法, 本文设计了不可压缩Navier-Stokes (N-S)方程支配流的若干并行数值算法. 这些并行算法可归为两大类: 一类是基于两重网格离散方法, 首先在粗网格上求解非线性的N-S方程, 然后在细网格的子区域上并行求解线性化的残差方程, 以校正粗网格的解; 另一类是基于新型完全重叠型区域分解技巧, 每台处理器用一局部加密的全局多尺度网格计算所负责子区域的局部有限元解. 这些并行算法实现简单, 通信需求少, 具有良好的并行性能, 能获得与标准有限元方法相同收敛阶的有限元解. 理论分析和数值试验验证了并行算法的高效性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号