首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution polymerization of ethylene in Isopar E in a semi-batch reactor using combined CGC-Ti and Et[Ind]2ZrCl2 catalysts was studied. Methylaluminoxane (MAO) and tris(pentafluorophenyl)borane were used as co-catalysts. Samples were analyzed by 13C NMR and gel permeation chromatography (GPC) for their branching content and molecular weight distribution. It was shown that there was an optimum ratio of CGC-Ti/Et[Ind]2ZrCl2 that maximizes the number of long-chain branches of the formed polyethylene.  相似文献   

2.
Ethylene polymerization was carried out by immobilization of rac-ethylenebis(1-indenyl)zirconium dichloride(Et(Ind)2 ZrCl2) and rac-dimethylsilylbis(1-indenyl)zirconium dichloride(Me2 Si(Ind)2 ZrCl2) preactivated with methylaluminoxane(MAO) on calcinated silica at different temperatures. Polymerizations of ethylene were conducted at different temperatures to find the optimized polymerization temperature for maximum activity of the catalyst. The Me2 Si bridge catalyst showed higher activity at the lower polymerization temperature compared to the Et bridge catalyst. The highest catalytic activities were obtained at temperatures about 50 °C and 70 °C for Me2 Si(Ind)2 ZrCl2 /MAO and Et(Ind)2 ZrCl2 /MAO catalysts systems, respectively. Inductively coupled plasma-atomic emission spectroscopy results and polymerization activity results confirmed that the best temperature for calcinating silica was about 450 °C for both catalysts systems. The melting points of the produced polyethylene were about 130 °C, which could be attributed to the linear structure of HDPE.  相似文献   

3.
Studies related to the behavior of different metallocene catalysts for the homopolymerization of 1-octadecene andits copolymerization with ethylene will be presented. The metallocenes: rac-Et(Ind)_2ZrCl_2, rac-Me_2Si(Ind)_2ZrCl_2 andPh_2C(Flu)(Cp)ZrCl_2 were chosen for the homopolymerization study. They show important differences in catalytic activity athigh temperatures (≥70℃), with rac-Et(Ind)_2ZrCl_2 showing the highest activity. At lower temperatures (≤30℃) thedifferences are negligible. For the copolymerization of ethylene with 1-octadecene only the catalysts rac-Et(Ind)_2ZrCl_2 andrac-Me_2Si(Ind)_2ZrCl_2 were studied. The results show that their catalytic activity is just like that for the homopolymerizationof 1-octadecene, with higher activity for the metallocene with the Et-bridged catalyst. ~(13)C-NMR analysis shows that thecomposition of the copolymerization products depends on the catalytic systems. Copolymers obtained with rac-Me_2Si(Ind)_2ZrCl_2 have greater comonomer incorporation. Thermal analysis shows that poly-1-octadecene synthesized withthe catalyst rac-Et(Ind)_2ZrCl_2 is very dependent on the polymerization temperature. The homopolymer obtained at 70℃presents two endothermal peaks at 41℃ and 53℃, as compared with the one obtained at 30℃ which presents one wider peakwith a maximum at 67℃. For the catalyst rac-Me_2Si(Ind)_2ZrCl_2 this trend is not observed. The type of metallocene and thereaction time do not significantly change the intrinsic viscosity, but the polymerization temperature changes it drastically,giving higher values at lower temperature. Viscosity measurements on the copolymers show that an increase of comonomerconcentration in the feed reduces the molecular weight of the copolymer, and it was also found that for homopolymer, themolecular weight is independent of the catalytic systems.  相似文献   

4.
Complexes (R^1Cp)(R^2Ind)ZrCl2, the catalysts previously reported active for ethylene polymerization showed high activity in ethylene/1-hexene copolymerization and propylene polymerization in the presence of MAO. The content of 1-hexene in copolymers ranged from 1.2% to 3.2%. In propylene polymerization the complex 1 showed the highest activity, up to 1.2×10^6 g of polypropylene per mol of catalyst per hour. Based on the analysis of NMR spectral data, the relationships between complex structures and polymerization results were explored.  相似文献   

5.
The ability of various enantiopure zirconocenes to catalyze the asymmetric methylalumination of allylbenzene has been tested. The enantioselectivity of an ethylene(Ind)2ZrCl2/MAO system is the same as that of authentic methyl cation generated with Ph3C+ from ethylene(Ind)2ZrMe2, confirming that the methyl cation is the active catalyst from ethylene(Ind)2ZrCl2/MAO.  相似文献   

6.
We investigated the ethylene copolymerization by utilizing Me2Si(Ind)2ZrCl2/MAO and Me2Si(Ind)2ZrCl2/MAO/SiO2 with 10-undecene-1-oxytrimethylsilane and 10-undecene-1-oxytriisopropylsilane and the ethylene copolymerization by using iPr(CpInd)ZrCl2/MAO and iPr(CpInd)ZrCl2/MAO/SiO2 with 5-norbornene-2-methyleneoxytrimethylsilane and 5-norbornene-2-methyleneoxytriisopropylsilane. The trimethylsilyl (TMS) protecting group could not prevent the catalyst deactivation caused by the addition of the polar comonomer. In contrast to that, good catalyst activities and comonomer contents were obtained with the triisopropylsilyl (TIPS) protected monomer. The homopolymerization of 10-undecene-1-OTIPS was carried out with Me2Si(Ind)2ZrCl2/MAO.  相似文献   

7.
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for the impregnation of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO(methylaluminoxane)/SMB catalyst was applied to the ethylene-hexene copolymerization under the conditions of variable Al(MAO)/Zr ratio and fixed Al(TEA, triethylaluminum)/Ti ratio. The effect of Al(MAO)/Zr ratio on the physical properties and chemical composition distributions of ethylene-hexene copolymers produced by a rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was investigated. The catalytic activity of rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB was steadily increased with increasing Al(MAO)/Zr ratio from 200 to 500. The ethylene-hexene copolymer produced with Al(MAO)/Zr = 300, 400, and 500 showed two melting points at around 110 °C and 130 °C, while that produced with Al(MAO)/Zr = 200 showed one melting point at 136 °C. The number of chemical composition distribution (CCD) peaks was increased from 4 to 7 and the short chain branches of ethylene-hexene copolymer were distributed over lower temperature region with increasing Al(MAO)/Zr ratio. The lamellas in the copolymer were distributed over lower temperature region and the small lamellas in the copolymer were increased with increasing Al(MAO)/Zr ratio. The rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced a ethylene-hexene copolymer with non-blocky sequence ([EHE]) with increasing Al(MAO)/Zr ratio.  相似文献   

8.
The isoselective propene polymerization using the supported catalyst SiO2/MAO/Me2Si(2-Me-Benz[e]Ind)2ZrCl2/AlR3 was investigated and compared with propene polymerization using the corresponding homogeneous catalyst system. The influence of propene concentration, polymerization medium, temperature, comonomer, and external aluminium alkyls on polymerization kinetics and polypropene properties such as molecular mass, stereo- and regioselectivity, morphology, and bulk density was studied. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Synthesis and characterization of a novel carbazole‐based monomer, 9‐(bicyclo[2.2.1]hept‐5‐en‐2‐ylmethyl)‐9H‐carbazole (BHMCZ) and its copolymerization with ethylene by using two metallocene/MAO catalyst systems are presented. The monomer was characterized by means of NMR spectroscopy, MS and elementary analysis. Copolymerization studies were conducted using [Ph2C(Ind)(Cp)ZrCl2] and [Ph2C(Flu)(Cp)ZrCl2] catalysts. The [Ph2C(Ind)(Cp)ZrCl2] catalyst gave a copolymer containing as much as 4.6 mol‐% of BHMCZ. Polymers were characterized using NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).  相似文献   

10.
A study was made on the effects of polymerization conditions on the long‐chain branching, molecular weight, and end‐group types of polyethene produced with the metallocene‐catalyst systems Et[Ind]2ZrCl2/MAO, Et[IndH4]2ZrCl2/MAO, and (n‐BuCp)2ZrCl2/MAO. Long‐chain branching in the polyethenes, as measured by dynamic rheometry, depended heavily on the catalyst and polymerization conditions. In a semibatch flow reactor, the level of branching in the polyethenes produced with Et[Ind]2ZrCl2/MAO increased as the ethene concentration decreased or the polymerization time increased. The introduction of hydrogen or comonomer suppressed branching. Under similar polymerization conditions, the two other catalyst systems, (n‐BuCp)2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO, produced linear or only slightly branched polyethene. On the basis of an end‐group analysis by FTIR and molecular weight analysis by GPC, we concluded that a chain transfer to ethene was the prevailing termination mechanism with Et[Ind]2ZrCl2/MAO at 80 °C in toluene. For the other catalyst systems, β‐H elimination dominated at low ethene concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 376–388, 2000  相似文献   

11.
A novel carrier of ultradispersed diamond black powder (UDDBP) was used to support metallocene catalyst. Al2O3 was also used as carrier in order to compare with UDDBP. Supported catalysts for ethylene polymerization were synthesized by two different reaction methods. One way was direct immobilization of the metallocene on the support, the other was adsorption of MAO onto the support followed by addition of the metallocene. Four supported catalysts Cp2ZrCl2/UDDBP, Cp2ZrCl2/Al2O3, Cp2ZrCl2/MAO/UDDBP and Cp2ZrCl2/Al2O3/MAO were obtained. The content of the zirconium in the supported catalyst was determined by UV spectroscopy. The activity of the ethylene polymerization catalyzed by supported catalyst was investigated. The influence of Al/Zr molar ratio and polymerization temperature on the activity was discussed. The polymerization rate was also observed.  相似文献   

12.
The kinetics of the ethylene‐norbornene copolymerization, catalyzed by rac‐Et(Ind)2ZrCl2/MAO, 90%rac/10%meso‐Et(4,7‐Me2Ind)2ZrCl2/MAO and rac‐H2C(3‐tert‐BuInd)2ZrCl2/MAO was followed by sampling from the reaction mixture at fixed time intervals. Catalyst activity, copolymer composition and molar mass were studied as a function of time. The polymers showed an unusually low polydispersity and a significant increase in their molar mass with time, suggesting a quasi‐living polymerization.  相似文献   

13.
Inorganic siliceous porous materials such as MFI type zeolite, mesoporous silica MCM‐41 and silica gel with different average pore diameters were applied to the adsorptive separation of methylaluminoxane (MAO) used as a cocatalyst in α‐olefin polymerizations. The separated MAOs combined with rac‐ethylene‐(bisindenyl)zirconium dichloride (rac‐Et(Ind)2ZrCl2) were introduced to propylene polymerization, and their influences on the polymerization activity and stereoregularity of the resulting polymers were investigated. The polymerization activity and isotactic [mmmm] pentad of the produced propylene were markedly dependent upon the pore size of the porous material used for adsorptive separation. From the results obtained from solvent extraction of the produced polymers, it was suggested that there are at least two kinds of active species with different stereospecificity in the rac‐Et(Ind)2ZrCl2/MAO catalyst system.  相似文献   

14.
Monoterpenes were used as renewable chain transfer agents and polymerization solvents for metallocene/methylaluminoxane (MAO) catalysis. The polymerization of 1‐hexene, ethylene, and propylene in d‐limonene, hydrogenated d‐limonene and α‐pinene is reported. As detected by 1H NMR analysis of the alkene region, chain transfer to d‐limonene yielded a higher percentage of trisubstituted alkenes. Size exclusion chromatography detected a decrease in molecular weight values resulting from chain transfer to d‐limonene. The [mmmm] pentads for isotactic polypropylene were characterized by 13C NMR and FTIR spectroscopy. Propylene polymerizations with the Et(Ind)2ZrCl2/MAO and Me2Si(Ind)2ZrCl2/MAO catalyst systems in d‐limonene gave [mmmm] pentad values as high as 0.97. For the Et(Ind)2ZrCl2/MAO catalyst system at 0 °C, the mol fraction of [mmmm] pentads increased from 0.86 to 0.94 upon switching the solvent from toluene to d‐limonene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3150–3165, 2007  相似文献   

15.
关喆  郑莹  焦书科 《化学学报》2001,59(10):1783-1787
采用只在球形MgCl2上负载MAO,聚合前再同rac--Et[Ind]2ZrCl2预混的负载方式进行丙烯聚合。在少量AlEt3的活化下,很低的Al(MAO)/Zr摩尔比时即可获得比均相催化剂高一个数量级的活性,考察了温度、压力、Al(MAO)/Zr摩尔比和催化剂浓度对聚合的影响,同时用13^CNMR测定了均相和载体催化体系所制备的聚丙烯的微结构,发现负载型茂金属催化剂制得的聚丙烯立构规整性高于均相体系,其五元组立构序列[mmmm]可从均相的52.6%提高到负载催化剂的79.5%。扫描电镜观察表明,聚合物颗粒可较好地复制球形催化剂的颗粒形态。  相似文献   

16.
This article discusses a new borane chain transfer reaction in olefin polymerization that uses trialkylboranes as a chain transfer agent and thus can be realized in conventional single site polymerization processes under mild conditions. Commercially available triethylborane (TEB) and synthesized methyl‐B‐9‐borabicyclononane (Me‐B‐9‐BBN) were engaged in metallocene/MAO [depleted of trimethylaluminum (TMA)]‐catalyzed ethylene (Cp2ZrCl2 and rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2 as a catalyst) and styrene (Cp*Ti(OMe)3 as catalyst) polymerizations. The two trialkylboranes were found—in most cases—able to initiate an effective chain transfer reaction, which resulted in hydroxyl (OH)‐terminated PE and s‐PS polymers after an oxidative workup process, suggesting the formation of the B‐polymer bond at the polymer chain end. However, chain transfer efficiencies were influenced substantially by the steric hindrances of both the substituent on the trialkylborane and that on the catalyst ligand. TEB was more effective than TMA in ethylene polymerization with Cp2ZrCl2/MAO, whereas it became less effective when the catalyst changed to rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2. Both TEB and Me‐B‐9‐BBN caused an efficient chain transfer in the Cp2ZrCl2/MAO‐catalyzed ethylene polymerization; nevertheless, Me‐B‐9‐BBN failed in vain with rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2/MAO. In the case of styrene polymerization with Cp*Ti(OMe)3/MAO, thanks to the large steric openness of the catalyst, TEB exhibited a high efficiency of chain transfer. Overall, trialkylboranes as chain transfer agents perform as well as B? H‐bearing borane derivatives, and are additionally advantaged by a much milder reaction condition, which further boosts their applicability in the preparation of borane‐terminated polyolefins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3534–3541, 2010  相似文献   

17.
Supported type cocatalysts using triphenylcarbenium perchlorate (Ph3CClO4) were prepared by impregnation on inorganic carrier, magnesium chloride (MgCl2) and applied to ethylene polymerizations with rac‐Et[Ind]2ZrCl2. Homogeneous polymerizations with Ph3CClO4 were also carried out for comparison. The activity of homogeneous polymerization was much lower than that obtained with methylaluminoxane (MAO). On the other hand, rac‐Et[Ind]2ZrCl2 activated by the supported type Ph3CClO4/MgCl2 system displayed high activity comparable to that obtained with MAO. From the results of fractionation and polymerization of the rac‐Et[Ind]2ZrCl2‐Ph3CClO4/MgCl2 catalyst system, it was found that the increased activity mainly came from the active species in the supernatant part. UV‐vis spectroscopic measurements combined with ICP analysis indicate that the active species in the supernatant fraction are composed of a stoichiometric amount of perchlorate and metallocene catalyst.  相似文献   

18.
Cp2ZrCl2 confined inside the supercage of NaY zeolites [NaY/methylaluminoxane (MAO)/Cp2ZrCl2] exhibited the shape and diffusion of a monomer‐controlled copolymerization mechanism that strongly depended on the molecular structure of the monomer and its size. For the ethylene–propylene copolymerization, NaY/MAO/Cp2ZrCl2 showed the effect of the comonomer on the increase in the polymerization rate in the presence of propylene, whereas the ethylene/1‐hexene copolymerization showed little comonomer effect, and the ethylene/1‐octene copolymerization instead showed a comonomer depression effect on the polymerization rate. Isobutylene, having a larger kinetic diameter, had little influence on the copolymerization behaviors with NaY/MAO/Cp2ZrCl2 for the ethylene–isobutylene copolymerization, which showed evidence of the shape and diffusion of a monomer‐controlled mechanism. The content of the comonomer in the copolymer chain prepared with NaY/MAO/Cp2ZrCl2 decreased by about one‐half in comparison with that of Cp2ZrCl2. A differential scanning calorimetry study on the melting endotherms after the successive annealing of the copolymers showed that the copolymers of NaY/MAO/Cp2ZrCl2 had narrow comonomer distributions, whereas those of homogeneous Cp2ZrCl2 were broad. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2171–2179, 2003  相似文献   

19.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

20.
The catalytic properties of a set of ansa‐complexes (R‐Ph)2C(Cp)(Ind)MCl2 [R = tBu, M = Ti ( 3 ), Zr ( 4 ) or Hf ( 5 ); R = MeO, M = Zr ( 6 ), Hf ( 7 )] in α‐olefin homopolymerization and ethylene/1‐hexene copolymerization were explored in the presence of MAO (methylaluminoxane). Complex 4 with steric bulk tBu group on phenyl exhibited remarkable catalytic activity for ethylene polymerization. It was 1.6‐fold more active than complex 11 [Ph2C(Cp)(Ind)ZrCl2] at 11 atm ethylene pressure and was 4.8‐fold more active at 1 atm pressure. The introduction of bulk substituent tBu into phenyl groups not only increased the catalytic activity greatly but also enhanced the content of 1‐hexene in ethylene/1‐hexene copolymerization. The highest 1‐hexene incorporation was 25.4%. In addition, 4 was also active for propylene and 1‐hexene homopolymerization, respectively, and low isotactic polypropylene (mmmm = 11.3%) and isotactic polyhexene (mmmm = 31.6%) were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号