首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Croton hirtus L’Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents—namely, water, methanol, dichloromethane, and ethyl acetate—and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.  相似文献   

2.
Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4′-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β (IL1β), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO—as well as pro-inflammatory cytokines—was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.  相似文献   

3.
The present study was designed to evaluate polarity-dependent extraction efficiency and pharmacological profiling of Polygonum glabrum Willd. Crude extracts of leaves, roots, stems, and seeds, prepared from solvents of varying polarities, were subjected to phytochemical, antioxidant, antibacterial, antifungal, antidiabetic, and cytotoxicity assays. Maximum extraction yield (20.0% w/w) was observed in the case of an acetone:methanol (AC:M) root extract. Distilled water:methanol (W:M) leaves extract showed maximum phenolic contents. Maximum flavonoid content and free radical scavenging potential were found in methanolic (M) seed extract. HPLC-DAD quantification displayed the manifestation of substantial quantities of quercetin, rutin, gallic acid, quercetin, catechin, and kaempferol in various extracts. The highest ascorbic acid equivalent total antioxidant capacity and reducing power potential was found in distilled water roots and W:M leaf extracts, respectively. Chloroform (C) seeds extract produced a maximum zone of inhibition against Salmonella typhimurium. Promising protein kinase inhibition and antifungal activity against Mucor sp. were demonstrated by C leaf extract. AC:M leaves extract exhibited significant cytotoxic capability against brine shrimp larvae and α-amylase inhibition. Present results suggest that the nature of pharmacological responses depends upon the polarity of extraction solvents and parts of the plant used. P. glabrum can be considered as a potential candidate for the isolation of bioactive compounds with profound therapeutic importance.  相似文献   

4.
Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 μg/mL and 76.05 μg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 μg/mL) and Caco-2 (IC50 = 83.98 μg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.  相似文献   

5.
Natural products black cumin—Nigella sativa (N. sativa) and wild garlic—Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2′,7′-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.  相似文献   

6.
The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified—three and two in NIM and PIM, respectively—as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds—dihydrocatalpol and leucosceptoside A—from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus.  相似文献   

7.
Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography–mass spectrometry (GC–MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N. arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC–MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.  相似文献   

8.
The aim of this study was to isolate pectins with antioxidant activity from the leaves of Epilobium angustifolium L. Two pectins, EA-4.0 and EA-0.8, with galacturonic acid contents of 88 and 91% were isolated from the leaves of E. angustifolium L. by the treatment of plant raw materials with aqueous hydrochloric acid at pH 4.0 and 0.8, respectively. EA-4.0 and EA-0.8 were found to scavenge the DPPH radical in a concentration-dependent manner at 17–133 μg/mL, whereas commercial apple pectin scavenged at 0.5–2 mg/mL. The antioxidant activity of EA-4.0 was the highest and exceeded the activity of EA-0.8 and a commercial apple pectin by 2 and 39 times (IC50—0.050, 0.109 and 1.961 mg/mL), respectively. Pectins EA-4.0 and EA-0.8 were found to possess superoxide radical scavenging activity, with IC50s equal to 0.27 and 0.97 mg/mL, respectively. Correlation analysis of the composition and activity of 32 polysaccharide fractions obtained by enzyme hydrolysis and anionic exchange chromatography revealed that the antioxidant capacity of fireweed pectins is mainly due to phenolics and is partially associated with xylogalacturonan chains. The data obtained demonstrate that pectic polysaccharides appeared to be bioactive components of fireweed leaves with high antioxidant activity, which depend on pH at their extraction.  相似文献   

9.
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.  相似文献   

10.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

11.
Homogeneous tertiary N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAT, are niche intermediates in the synthesis of homogeneous N-alkyl (C1–C18)-N,N-dimethyl-N-β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylammonium chlorides (unitary degree of oligomerization of ethylene oxide in the polyoxyethylene chain). This paper synthetically presents the dependence of the reductive methylation yields of homogeneous primary β-lauryl/myristyl 7/3 polyethyleneoxy n = 3–18 ethylamines, LM(EO)nAP, on the reaction time (10–90 min), the temperature (70 °C), the molar ratio formic aldehyde /LM(EO)nAP (1.1/1–2.5/1), the molar ratio HCOOH/LM(EO)nAP (5/1), the degree of oligomerization of ethylene oxide in the homogeneous polyoxyethylene chain in the 3,6,9,12,18 series, and the structure of the phase-transfer catalysts. The steric effects of hydrophobic groups CH3 and C18H37 grafted onto the ammonium function, and the micellar phenomena in the vicinity of their critical micellar concentration, directly proportional to the homogeneous degree of oligomerization, were highlighted. In all cases, a steady increase in reductive methylation yields was observed, with even quantitative values obtained. The high purity of the homologous series LM(EO)nAT will allow their personalization as reference structures for the study of the evolution of basic colloidal characteristics useful in forecasting technological applications. LM(EO)nAP were obtained either by direct amidoethylation (nucleophilic addition under basic catalysis of homogeneous lauryl/myristyl 7/3 polyethoxylated n = 3, 6, 9, 12, 18 alcohols, LM(EO)nOH, to acrylamide monomer) or by cyanoethylation of LM(EO)nOH under basic catalysis at 25–50 °C, in the presence of Fe2+ cations as oligomerization/polymerization inhibitor, followed by partial acid hydrolysis of homogeneous β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionitriles, LM(EO)nPN, to β-alkyl (C12H25/C14H29) 7/3 polyethyleneoxy n = 3, 6, 9, 12, 18 propionamides, LM(EO)nPD, which led to LM(EO)nAP by Hoffmann degradation. Homogeneous higher tertiary polyetheramines LM(EO)nAT were structurally characterized.  相似文献   

12.
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.  相似文献   

13.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

14.
Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.  相似文献   

15.
Phytosterols and tocopherols are commonly used in food and pharmaceutical industries for their health benefits. Current analysis methods rely on conventional liquid chromatography, using an analytical column, which can be tedious and time consuming. However, simple, and fast analytical methods can facilitate their qualitative and quantitative analysis. In this study, a fast chromatography-tandem mass spectrometric (FC-MS/MS) method was developed and validated for the quantitative analysis of phytosterols and tocopherols. Omitting chromatography by employing flow injection analysis—mass spectrometry (FIA-MS) failed in the quantification of target analytes due to analyte-to-analyte interferences from phytosterols. These interferences arise from their ambiguous MS fingerprints that would lead to false identification and inaccurate quantification. Therefore, a C18 guard column with a 1.9 µm particle size was employed for FC-MS/MS under isocratic elution using acetonitrile/methanol (99:1 v/v) at a flow rate of 600 µL/min. Analyte-to-analyte interferences were identified and eliminated. The false peaks could then be easily identified due to chromatographic separation. In addition, two internal standards were evaluated, namely cholestanol and deuterated cholesterol. Both internal standards contributed to the observed analyte-to-analyte interferences; however, adequate shift in the retention time for deuterated cholesterol eliminated its interferences and allowed for an accurate quantification. The method is fast (1.3 min) compared to published methods and can distinguish false peaks observed in FIA-MS. Seven analytes were quantified simultaneously, namely brassicasterol, campesterol, stigmasterol, β-sitosterol, α-tocopherol, δ-tocopherol, and γ-tocopherol. The method was successfully applied in the quantitative analysis of phytosterols and tocopherols present in the unsaponifiable matter of canola oil deodorizer distillate (CODD). β-sitosterol and γ-tocopherol were the most abundant phytosterols and tocopherols, respectively.  相似文献   

16.
Hypericum (Hypericaceae) is a genus that comprises a high number of species around the world. In this study, the roots, aerial parts, flowers, fruits, and aerial parts with flowers from Hypericum scabrum were macerated separately by methanol and water and then fractionated by different solvents of, such as ethyl acetate, n-hexane, butanol, dichloromethane, aqueous residue sub-extracts, and ethnobotanical use. All the extracts, sub-extracts and essential oils of H. scabrum were investigated for the first time in detail for their antimicrobial, total phenolics, and antioxidant activities. Anatomical structures of the root, stem, leaf, upper and lower leaf surface, stamen, sepal, and petal of H. scabrum were examined. The biochemical layout of essential oils was determined by GC and GC/MS. The antioxidant activity was determined by free radical scavenging activity (by DPPH). Antimicrobial activity was applied against Candida albicans ATCC 10231, Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 19659, and C. tropicalis ATCC 750 using microdilution methods. The essentials of the aerial parts, flower, and fruit are characterized by the presence of monoterpene hydrocarbons, whereas roots oil include alkanes. The GC-FID and GC-MS analysis showed that major components of roots, aerial parts, flowers, and fruits oils were undecane (66.1%); α-pinene (17.5%), γ-terpinene (17.4%), and α-thujene (16.9%); α-pinene (55.6%), α-thujene (10.9%), and γ-terpinene (7.7%); α-pinene (85.2%), respectively. The aerial part sub-extracts indicated a greater level of total phenolics and antioxidant potential. The n-hexane sub-extracts (from aerial part, flower, and aerial part with flower) showed the best activity against B. subtilis, with 39.06 µg/mL MIC value. The presented research work indicates that H. scabrum can be a novel promising resource of natural antioxidant and antimicrobial compounds.  相似文献   

17.
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.  相似文献   

18.
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals.  相似文献   

19.
(1) Background: the current research was conducted to investigate the potential non-antioxidant roles of vitamin E in the protection of hepatocysts from oxidative damage. (2) Methods: primary sheep hepatocytes were cultured and exposed to 200, 400, 600, or 800 μmol/L hydrogen peroxide, while their viability was assessed using a CCK-8 kit. Then, cells were treated with 400 μmol/L hydrogen peroxide following a pretreatment with 50, 100, 200, 400, and 800 μmol/L vitamin E and their intracellular ROS levels were determined by means of the DCF-DA assay. RNA-seq, verified by qRT-PCR, was conducted thereafter: non-treated control (C1); cells treated with 400 μmol/L hydrogen peroxide (C2); and C2 plus a pretreatment with 100 μmol/L vitamin E (T1). (3) Results: the 200–800 μmol/L hydrogen peroxide caused significant cell death, while 50, 100, and 200 μmol/L vitamin E pretreatment significantly improved the survival rate of hepatocytes. ROS content in the cells pretreated with vitamin E was significantly lower than that in the control group and hydrogen-peroxide-treated group, especially in those pretreated with 100 μmol/L vitamin E. The differentially expressed genes (DEGs) concerning cell death involved in apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2), pyroptosis (NLRP3, IL-1β, and IRAK2), and ferroptosis (TFRC and PTGS2). The abundances of IL-1β, IRAK2, NLRP3, CASP8, CASP8AP2, RIPK1, and TLR7 were significantly increased in the C1 group and decreased in T1 group, while TFRC and PTGS2 were increased in T1 group. (4) Conclusions: oxidative stress induced by hydrogen peroxide caused cellular damage and death in sheep hepatocytes. Pretreatment with vitamin E effectively reduced intracellular ROS levels and protected the hepatocytes from cell death by regulating gene expression associated with apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2) and pyroptosis (NLRP3, IL-1β, and IRAK2), but not ferroptosis (TFRC and PTGS2).  相似文献   

20.
The aim was to assess plant driven changes in the activity and diversity of microorganisms in the top layer of the zinc and lead smelter waste piles. The study sites comprised two types (flotation waste—FW and slag waste—SW) of smelter waste deposits in Piekary Slaskie, Poland. Cadmium, zinc, lead, and arsenic contents in these technosols were extremely high. The root zone of 8 spontaneous plant species (FW—Thymus serpyllum, Silene vulgaris, Solidago virgaurea, Echium vulgare, and Rumex acetosa; and SW—Verbascum thapsus; Solidago gigantea, Eupatorium cannabinum) and barren areas of each waste deposit were sampled. We observed a significant difference in microbial characteristics attributed to different plant species. The enzymatic activity was mostly driven by plant-microbial interactions and it was significantly greater in soil affected by plants than in bulk soil. Furthermore, as it was revealed by BIOLOG Ecoplate analysis, microorganisms inhabiting barren areas of the waste piles rely on significantly different sources of carbon than those found in the zone affected by spontaneous plants. Among phyla, Actinobacteriota were the most abundant, contributing to at least 25% of the total abundance. Bacteria belonging to Blastococcus genera were the most abundant with the substantial contribution of Nocardioides and Pseudonocardia, especially in the root zone. The contribution of unclassified bacteria was high—up to 38% of the total abundance. This demonstrates the unique character of bacterial communities in the smelter waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号