首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, an efficient, unmodified, and clean biological method was provided to prepare high crystallinity nanocellulose for the high-value green application of hemp stalk. The biological method of nanocellulose (NCs-B) was prepared with the enzyme and a small amount of alkali, while the chemical method of nanocellulose (NCs-C) was prepared with strong acid. By fitting small-angle X-ray diffraction with the quantitative polydispersity hypothesis, the cross-sectional morphology and capacity distribution were analyzed. The structure and performance of NCs were characterized by wide-angle diffraction, Fourier transform infrared spectrum, transmission electron microscope , contact angle, and Zeta potential. The distribution of the unit volume capacity of NCs-B was 13.9%, which was higher than that of NCs-C (5.9%) prepared by the conventional chemical method. The diameter and length of NCs-B were 1.77 nm and 171.6 nm, accounting for 54% and 143% of the NCs-C, respectively. The preparation rate of NCs-B was 40.64%, and the utilization rate of cellulose reached 83.14%, which was 1.39 times that of NCs-C. The crystallinity of NCs-B (63.31%) was similar to that of NCs-C, but was significantly higher than that of other methods. The NCs-B was hydrophobic (108.4°), which was different from the hydrophilicity of NCs-C (39.6°). The cell viability of NCs-B was 140%, which was 2.4 times that of NCs-C, and it was non-toxic.  相似文献   

2.
We present a novel nanostructure in the form of cellulose nanoplatelets (CNPs) with an inner array of entangled nanofibrils. The planar structure was isolated from the parenchyma cells of Agave salmiana first using basic pretreatment, then by dissolving lignin and hemicellulose using acid hydrolysis, and finally by modifying the cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). The crystallinity index was calculated following the purification process, and it was found that nanocellulose was 30% more crystalline than the raw material. Using transmission electron microscopy, it was found that the nanoplatelets comprise ~2–3 nm long cellulose entangled nanofibrils. In addition, via atomic force microscopy, the morphology of the nanoplatelets was confirmed; they were 90 nm thick for the acid hydrolyzed sample and 70 nm thick for the TEMPO-modified sample; their lateral size varied from a few to hundreds of micrometers, presenting large aspect ratios. Finally, CNPs were isolated and processed into thin paper with a thickness of 100 µm and transmittance of 86%, demonstrating great potential as a transparent film.  相似文献   

3.
Many tonnes of agricultural wastes are generated annually, which contains a relatively high amount of cellulose; banana pseudo-stem is one waste type that is a promising material for nanocellulose production. This research characterised nanocellulose from inner and outer layers of banana pseudo-stem as a preliminary research strategy for designing biodegradable packaging material from banana pseudo-stem nanocellulose. Nanocellulose was successfully prepared through TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl)-mediated oxidation. The extracted nanocellulose from both the inner and outer layers had observed widths of approximately 7–35 nm and long fibrillated fibre. They had high negative zeta potential (lower than ?33.6) that provided good colloidal stability. The purity of the nanocellulose was high as demonstrated by 13C solid-state NMR and Fourier transform infrared spectroscopy. Nanocellulose from both layers was significantly more crystalline than the raw materials. Thermal stability of nanocellulose sourced from inner and outer layers was relatively similar, with degradation temperature of approximately 220 °C, which was slightly lower than the degradation temperature of its native form (232 °C for inner layer and 261 °C for outer layer).  相似文献   

4.
The dimensions of nanocelluloses are important factors in controlling their material properties. The present study reports a fast and robust method for estimating the widths of individual nanocellulose particles based on the turbidities of their water dispersions. Seven types of nanocellulose, including short and rigid cellulose nanocrystals and long and flexible cellulose nanofibers, are prepared via different processes. Their widths are calculated from the respective turbidity plots of their water dispersions, based on the theory of light scattering by thin and long particles. The turbidity‐derived widths of the seven nanocelluloses range from 2 to 10 nm, and show good correlations with the thicknesses of nanocellulose particles spread on flat mica surfaces determined using atomic force microscopy.

  相似文献   


5.
Emulsion electrospinning is a method of modifying a fibers’ surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate–S) or nonionic (Tween 80–T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4–9 µm for S and 8–13 µm for T). The appearance of anionic surfactant micelles reduced the diameter of the fiber (100–700 nm) and the wettability of the nonwoven surface (up to 77°) compared to un-modified PCL polymer fibers (100–900 nm and 130°). The use of a non-ionic surfactant resulted in better loading efficiency of micelles with albumin (about 90%), lower wettability of the nonwoven fabric (about 25°) and the formation of larger fibers (100–1100 nm). X-ray photoelectron spectroscopy (XPS) was used to detect the presence of the protein, and UV-Vis spectrophotometry was used to determine the loading efficiency and the nature of the release. The results showed that the location of the micelles influenced the release profiles of the protein, and the materials modified with micelles with the nonionic surfactant showed no burst release. The release kinetics was characteristic of the zero-order release model compared to anionic surfactants. The selected surfactant concentrations did not adversely affect the biological properties of fibrous substrates, such as high viability and low cytotoxicity of RAW macrophages 264.7.  相似文献   

6.
This study aims to characterize and valorize hemp residual biomass by a slow pyrolysis process. The volatile by-products of hemp carbonization were characterized by several methods (TGA, UV-VIS, TLC, Flash Prep-LC, UHPLC, QTOF-MS) to understand the pyrolysis reaction mechanisms and to identify the chemical products produced during the process. The obtained carbon yield was 29%, generating a gaseous stream composed of phenols and furans which was collected in four temperature ranges (F1 at 20–150 °C, F2 at 150–250 °C, F3 at 250–400 °C and F4 at 400–1000 °C). The obtained liquid fractions were separated into subfractions by flash chromatography. The total phenolic content (TPC) varied depending on the fraction but did not correlate with an increase in temperature or with a decrease in pH value. Compounds present in fractions F1, F3 and F4, being mainly phenolic molecules such as guaiacyl or syringyl derivatives issued from the lignin degradation, exhibit antioxidant capacity. The temperature of the pyrolysis process was positively correlated with detectable phenolic content, which can be explained by the decomposition order of the hemp chemical constituents. A detailed understanding of the chemical composition of pyrolysis products of hemp residuals allows for an assessment of their potential valorization routes and the future economic potential of underutilized biomass.  相似文献   

7.
The lengths of ten types of cellulose nanofibrils were evaluated by shear viscosity measurement of their dilute dispersions. Aqueous dispersions of surface-carboxylated cellulose nanofibrils with a uniform width of ~3 nm were prepared from wood cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation and successive mechanical treatment. Cellulose nanofibril samples with different average lengths were prepared by controlling the conditions of the oxidation or mechanical treatment. The viscosity-average lengths, L visc, of the nanofibrils were calculated by applying the shear viscosities of the dilute dispersions to an equation for the dilute region flow behavior of rod-like polymer molecules. The obtained L visc values ranged from 1,100 to 2,500 nm and showed a linear relationship to the length-weighted average length, L w, measured by microscopic observation; the relation was described as L visc = 1.764 × L w + 764. The influences of the electric double-layer of the nanofibrils and surface-carboxylate content on the value of L visc were also investigated.  相似文献   

8.
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600–620 nm and longer. Phosphorescence quantum yields (Φp) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (ΦΔ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10–100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm–2, 7.8 mW cm–2) and 625 nm red (100 J cm–2, 42 mW cm–2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm–2, 28 mW cm–2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.  相似文献   

9.
Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.  相似文献   

10.
This paper presents a facile and low-cost strategy for fabrication lysozyme-loaded mesoporous silica nanotubes (MSNTs) by using silk fibroin (SF) nanofiber templates. The “top-down method” was adopted to dissolve degummed silk in CaCl2/ formic acid (FA) solvent, and the solution containing SF nanofibrils was used for electrospinning to prepare SF nanofiber templates. As SF contains a large number of -OH, -NH2 and -COOH groups, the silica layer could be easily formed on its surface by the Söber sol-gel method without adding any surfactant or coupling agent. After calcination, the MSNTs were obtained with inner diameters about 200 nm, the wall thickness ranges from 37 ± 2 nm to 66 ± 3 nm and the Brunauer–Emmett–Teller (BET) specific surface area was up to 200.48 m2/g, the pore volume was 1.109 cm3/g. By loading lysozyme, the MSNTs exhibited relatively high drug encapsulation efficiency up to 31.82% and an excellent long-term sustained release in 360 h (15 days). These results suggest that the MSNTs with the hierarchical structure of mesoporous and macroporous will be a promising carrier for applications in biomacromolecular drug delivery systems.  相似文献   

11.
In the last decade, the demand for edible niche oils has increased. Therefore, the aim of this study was to characterize the seeds hemp (Cannabis sativa L.) varieties: ‘Finola’ (FIN-314)’, ‘Earlina 8FC’, and ‘Secuieni Jubileu’, and cold and hot pressed oils were prepared from each seed. The seeds were examined for moisture content, granulometric distribution, bulk density, and fat content. Seeds were pressed without and with preconditioning (60 °C), and oil yield and pressing time were recorded. The oil was filtered through cellulose membranes. Oil–water content, oil color, fatty acid profile, and sterol content were studied. From the study conducted, there are significant differences in the parameters of oil recovery and its quality compared to ‘Finola’ seed oil, which is widely reported in the literature. ‘Finola’ oil yield was the lowest, with an average of 79% compared to ‘Earlina’ (82%) and ‘S. Jubileu’ (84%). All oil samples contained a comparable amount of sterols, with campesterol (0.32 mg/g), β-sitosterol (1.3 mg/g) and Δ5-avenasterol (0.15 mg/g) predominating. From the organoleptic evaluation, it was evident that both varieties hemp oils and marc (‘Earlina’ and ‘S. Jubileu’) were not bitter like the “Finola” oil and marc. More detailed studies in this direction have to be undertaken.  相似文献   

12.
TiO2 nanopowders modified by Nd and Sm were prepared using the sol-gel technique. It was found by XRD analysis that the samples containing Sm are amorphous up to 300 °C, while those with Nd preserve a mixed organic-inorganic amorphous structure at higher temperatures (400 °C). The TiO2 (rutile) was not detected up to 700 °C in the presence of both modified oxides. TiO2 (anatase) crystals found at about 400 °C in the Sm-modified sample exhibited an average crystallite size of about 25–30 nm, while doping with Nd resulted in particles of a lower size—5–10 nm. It was established by DTA that organic decomposition is accompanied by significant weight loss occurring in the temperature range 240–350 °C. Photocatalytic tests showed that the samples heated at 500 °C possess photocatalytic activity under UV irradiation toward Malachite green organic dye. Selected compositions exhibited good antimicrobial activity against E. coli K12 and B. subtilis.  相似文献   

13.
Fourier Transform Infrared (FT-IR) spectroscopy and imaging combined with hierarchical cluster analysis (HCA) was applied to analyse biochemical properties of Early Middle Ages hemp (Cannabis sativa L.) bast fibres collected from lake bottom sediment of lake Słone. The examined plant macrofossil material constitutes residues of the hemp retting process that took place in the 7th–8th century. By comparison of three samples: untreated isolated bast fibres, and fibres incubated overnight at 4 and 37 °C, we were able to mimic the retting conditions. Using FT-IR qualitative and semi-quantitative assessment of the primary polysaccharides content, total protein content, and their spatial distribution was performed within the hemp fibres. The concentration of cellulose remained vastly unchanged, while the concentration of lignin and pectin was the highest in the untreated sample. The spatial distributions of compounds were heterogeneous in the untreated and 4 °C-incubated samples, and homogenous in the specimen processed at 37 °C. Interestingly, a higher amide content was detected in the latter sample indicating the highest degree of enzymatic degradation. In this study, we show that the spectroscopic methods allow for a non-destructive evaluation of biochemical composition of plant fibres without preparation, which can be an appropriate approach for studying ancient plant remains.  相似文献   

14.
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs–nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs–nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs–nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.  相似文献   

15.
Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.  相似文献   

16.
Cannabis sativa L. is an herbaceous plant belonging to the family of Cannabaceae. It is classified into three different chemotypes based on the different cannabinoids profile. In particular, fiber-type cannabis (hemp) is rich in cannabidiol (CBD) content. In the present work, a rapid nano liquid chromatographic method (nano-LC) was proposed for the determination of the main cannabinoids in Cannabis sativa L. (hemp) inflorescences belonging to different varieties. The nano-LC experiments were carried out in a 100 µm internal diameter capillary column packed with a C18 stationary phase for 15 cm with a mobile phase composed of ACN/H2O/formic acid, 80/19/1% (v/v/v). The reverse-phase nano-LC method allowed the complete separation of four standard cannabinoids in less than 12 min under isocratic elution mode. The nano-LC method coupled to ultraviolet (UV) detection was validated and applied to the quantification of the target analytes in cannabis extracts. The nano-LC system was also coupled to an electrospray ionization–mass spectrometry (ESI-MS) detector to confirm the identity of the cannabinoids present in hemp samples. For the extraction of the cannabinoids, three different approaches, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), and an extraction procedure adapted from the French Pharmacopeia’s protocol on medicinal plants, were carried out, and the results achieved were compared.  相似文献   

17.
Polyethylene (PE) fibers were prepared by ethylene extrusion polymerization with an MCM‐41‐supported titanocene catalyst. The morphological and mechanical properties of these nascent PE fibers were investigated. Three levels of fibrous morphologies were identified in the fiber samples through an extensive scanning electron microscopy study. Extended‐chain PE nanofibrils with diameters of about 60 nm were the major morphological units present in the fiber structure. The nanofibrils were parallel‐packed into individual microfibers with diameters of about 1–30 μm. The microfibers were further aggregated irregularly into fiber aggregates and bundles. In comparison with commercial PE fibers and data reported in the literature, the individual microfibers produced in situ via ethylene extrusion polymerization without posttreatment exhibited a high tensile strength (0.3–1.0 GPa), a low tensile modulus (3.0–7.0 GPa), and a high elongation at break (8.5–20%) at 35 °C. The defects in the alignment of the nanofibrils were believed to be the major reason for the low modulus values. It was also found that a slight tensile drawing could increase the microfiber strength and modulus. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2433–2443, 2003  相似文献   

18.
A chalcone series (3a–f) with electron push–pull effect was synthesized via a one-pot Claisen–Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512–567 nm with mega-stokes shift (∆λ = 93–139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a–f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 μM) than normal cells (IC50 value >100 μM). Furthermore, the antimicrobial properties of chalcones 3a–f were investigated. Interestingly, 3a–f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10–0.60 mg/mL (375–1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.  相似文献   

19.
Hemp and hemp seed press cake—a by-product of hemp oil production—are high-protein, gluten-free raw materials that are often used to enhance the nutritional value of breads. The addition of hemp materials, however, often negatively impacts the technological parameters of breads. Consequently, this study investigated whether and how much the addition of various by-products of hemp seed press cakes to wheat bread mixtures adversely affects the texture and colour profile. The texture profile and colour were determined using a texture analyser and tristimulus measurements. The particle size of raw materials was also measured. Principal component analysis was then used to visualise the correlation between all measured values as well as nutritional parameters. The results showed that the addition of only 1% of some hemp raw materials caused significant technological changes (p > 0.05). Hemp raw materials increased bread hardness and decreased elasticity. The colour of breads containing 1% hemp was also visibly darker than the reference bread. The addition of more hemp led to further darkening and the deterioration of the technological parameters of the products. Consequently, while various hemp materials have high nutritional value, a balance with sensory properties, e.g., textural and colour, has to be reached.  相似文献   

20.
A heterobimetallic supramolecular polymer (polyRuFe) with alternately complexed Ru(II) and Fe(II) is prepared following a stepwise synthetic route through harnessing first the strongly binding metal ion Ru(II) and then the weakly binding metal ion Fe(II). A high yield of product is achieved in each step. The heterometal ions are incorporated into the polymer chain in identical coordination environments formed by two 2,2′:6′,2″-terpyridine moieties. Characterization is accomplished by NMR spectroscopy, MALDI–TOF mass spectrometry, UV–Vis spectroscopy, and cyclic voltammetry. PolyRuFe shows a wide optical window (λ = 311–577 nm) and a broad distinct reversible redox nature of two types, originated from the coupling of the two heterometallic segments into the polymer chain. Such characteristics of polyRuFe suggest its potential for various electrochemical and electro-optical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号