首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This work evaluated the availability and sorption behaviour of four pharmaceuticals and eight of their metabolites in sewage sludge and sludge-amended soil. Digested sludge and compost were evaluated. The highest levels found in digested sludge corresponded to caffeine (up to 115 ng g−1 dm), ibuprofen (45 ng g−1 dm) and carbamazepine (9.3 ng g−1 dm). The concentrations measured in compost were even lower than in digested sludge. No compound was detected in sludge-amended soils. This fact could be due to the dilution effect after sludge application to soil. Different adsorption capacities in sludge–soil mixtures were measured for the studied compounds at the same spike concentration. In general, except for paraxanthine and 3-hydroxycarbamazepine, the metabolite concentrations measured in the mixtures were almost two-fold lower than those of their parent compounds, which can be explained by their mobility and lixiviation tendency. The log Kd ranged from −1.55 to 1.71 in sludge samples and from −0.29 to 1.18 in soil–sludge mixtures. The log Kd values calculated for compost were higher than those calculated for digested sludge. The obtained results implied that the higher organic carbon content of compost could influence soil contamination when it is applied to soil.  相似文献   

2.
The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22–5449.21 μg L−1, ND–52.20 ng g−1, 21.53 ng g−1, and ND–11.58 ng g−1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1–3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.  相似文献   

3.
The liquid-phase adsorption of toluene in cyclohexane and hexane solutions on modified activated carbons was evaluated; the energy involved in the interaction between these solutions and the solids was determined by immersion enthalpies of pure solvents and their mixtures, and the contribution of the system constituents was calculated by differential enthalpies. The thermal treatment generated modifications that favored adsorption and interaction with the evaluated solutions, since it increased the textural parameters and the basic character of the samples. Cyclohexane could create greater competition with the adsorption sites compared to hexane, but it favored the increase in adsorption capacities (0.416 to 1.026 mmol g−1) and the interactions with the solid evaluated through the immersion enthalpies. The immersion enthalpies of pure solvents (−16.36 to −112.7 J g−1) and mixtures (−25.65 to −104.34 J g−1) had exothermic behaviors that were decreasing due to the possible displacement of solvent molecules when increasing the solute concentration in the mixtures. The differential enthalpies for toluene were negative (−18.63 to −2.14 J), mainly due to the π–π interaction with the solid, while those of the solvent–solid component tended to be positive values (−4.25 to 55.97 J) due to the displacement of the solvent molecules by those of toluene.  相似文献   

4.
The aim of this work was to investigate the influence of initial pH value (pH0) on the isothermal adsorption of Reactive Black 5 (RB5) dye on commercial powdered activated carbon. Four initial pH values were chosen for this experiment: pH0 = 2.00, 4.00, 8.00, and 10.00. In order to investigate the mechanism of adsorption kinetic, studies have been performed using pseudo-first-order and pseudo-second-order kinetic models as well as an intraparticle diffusion model. In addition, thermodynamic parameters of adsorption were determined for pH0 = 4.00. Results of this research showed that the initial pH value significantly influences the adsorption of RB5 dye onto activated carbon. The highest adsorption capacities (qe) and efficiencies of decolouration were observed for initial pH values of pH0 = 2.00 (qe = 246.0 mg g−1) and 10.00 (qe = 239.1 mg g−1) due to strong electrostatic interactions and attractive π···π interactions, respectively. It was also shown that the adsorption of RB5 dye on activated carbon at all initial pH values is kinetically controlled, assuming a pseudo-second-order model, and that intraparticle diffusion is not the only process that influences on the adsorption rate.  相似文献   

5.
The presence of carcinogenic bromate (BrO3) in drinking water became a global concern and efforts towards its removal mainly focused on addressing the source. Herein, we rationally designed a porphyrin-based covalent organic framework (PV-COF) with a cationic surface to provide electrostatic interactions and a porphyrin core to induce hydrogen bonding interactions for the efficient removal of BrO3 from water. Through H-bonding and electrostatic interactions, PV-COF exhibited an exceptional bromate removal efficiency (maximum adsorption capacity, Qmax: 203.8 mg g−1) with the fastest uptake rate (kads) of 191.45 g mg−1 min−1. The bromate concentration was reduced to far below the allowed concentration in drinking water (10 ppb) within 20 minutes. We studied the relationship between bromate adsorption and COF surface modification by metalation of the porphyrinic core or neutralization of the viologen linkers by chemical reduction. The bromate adsorption mechanism was studied by EDAX mapping and molecular simulations, and it was found that ion exchange and hydrogen bonding formation drive the adsorption. Importantly, PV-COF could be easily recycled several times without compromising its adsorption efficiency.

A cationic COF removes carcinogenic bromate with a remarkable rate constant of 191.45 g mg−1 min−1.  相似文献   

6.
The thermodynamic, kinetic, and structural properties of Ln3+ complexes with the bifunctional DO3A-ACE4− ligand and its amide derivative DO3A-BACE4− (modelling the case where DO3A-ACE4− ligand binds to vector molecules) have been studied in order to confirm the usefulness of the corresponding Gd3+ complexes as relaxation labels of targeted MRI contrast agents. The stability constants of the Mg2+ and Ca2+ complexes of DO3A-ACE4− and DO3A-BACE4− complexes are lower than for DOTA4− and DO3A3−, while the Zn2+ and Cu2+ complexes have similar and higher stability than for DOTA4− and DO3A3− complexes. The stability constants of the Ln(DO3A-BACE) complexes increase from Ce3+ to Gd3+ but remain practically constant for the late Ln3+ ions (represented by Yb3+). The stability constants of the Ln(DO3A-ACE)4− and Ln(DO3A-BACE)4− complexes are several orders of magnitude lower than those of the corresponding DOTA4− and DO3A3− complexes. The formation rate of Eu(DO3A-ACE) is one order of magnitude slower than for Eu(DOTA), due to the presence of the protonated amine group, which destabilizes the protonated intermediate complex. This protonated group causes the Ln(DO3A-ACE) complexes to dissociate several orders of magnitude faster than Ln(DOTA) and its absence in the Ln(DO3A-BACE) complexes results in inertness similar to Ln(DOTA) (as judged by the rate constants of acid assisted dissociation). The 1H NMR spectra of the diamagnetic Y(DO3A-ACE) and Y(DO3A-BACE) reflect the slow dynamics at low temperatures of the intramolecular isomerization process between the SA pair of enantiomers, R-Λ(λλλλ) and S-Δ(δδδδ). The conformation of the Cα-substituted pendant arm is different in the two complexes, where the bulky substituent is further away from the macrocyclic ring in Y(DO3A-BACE) than the amino group in Y(DO3A-ACE) to minimize steric hindrance. The temperature dependence of the spectra reflects slower ring motions than pendant arms rearrangements in both complexes. Although losing some thermodynamic stability relative to Gd(DOTA), Gd(DO3A-BACE) is still quite inert, indicating the usefulness of the bifunctional DO3A-ACE4− in the design of GBCAs and Ln3+-based tags for protein structural NMR analysis.  相似文献   

7.
Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g−1 to 3060 m2·g−1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g−1, a large total pore volume of 3.07 cm3·g−1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g−1 at −196 °C and 4.7 mmol·g−1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g−1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.  相似文献   

8.
Amazonian fruits are excellent sources of bioactive compounds and can be used in beverages to improve the nutritional and sensorial characteristics. The present study aimed to develop a blend of murici (Byrsonima Crassifolia (L.) Kunth) and taperebá (Spondias Mombin L.) through experimental design and investigating the nutritional and sensorial characteristics of fruits and beverages. The murici was highlighted as higher vitamin C content (58.88 mg · 100 g−1) compared to taperebá (25.93 mg · 100 g−1). The murici and taperebá are good sources of total phenolic compounds (taperebá 1304.15 ± 19.14 mgGAE · 100 g−1 and the murici of 307.52 ± 19.73 mg GAE · 100 g−1) and flavonoids (174.87 ± 1.76 μgQE/g and 129.46 ± 10.68 μgQE/g, murici and taperebá, respectively), when compared to other Brazilian fruits. The antioxidant capacity in different methods revealed that the taperebá had a higher average in the results, only in the ORAC method and did not present a significant difference (p > 0.05) in relation to the murici. The beverage development was performed using experimental design 23, showed through sensory analysis and surface response methodology that murici and high sugar content (between 12.5 and 14.2% of sugar) influenced in sensory acceptance. Our findings indicate that beverages with improved nutrition and a sensory acceptance can be prepared using taperebá and murici fruits.  相似文献   

9.
Due to the lack of phytochemical composition data, the major goals of the present study on Amphiroa rigida J.V. Lamouroux were to: (a) investigate and compare volatilome profiles of fresh and air-dried samples obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC/MS) analysis; (b) determine fatty acids profile by gas chromatography with flame ionization detector (GC-FID); (c) obtain the pigment profiles of semipurified extracts by high performance liquid chromatography (HPLC) and (d) evaluate the antioxidant and antimicrobial activities of its less polar fractions. The comparison of headspace of fresh (FrAr) and air-dried (DrAr) samples revealed many similarities regarding the presence and abundance of the major (heptadecane and pentadecane) and minor compounds. The hydrodistillate (HD) of DrAr profile was quite different in comparison to HD-FrAr. The predominant compound in HD-FrAr was (E)-phytol. In HD-DrAr, its percentage was approximately one-half reduced, but the abundance of its degradation product phytone and of unsaturated and oxygenated compounds increased indicating more intense fatty acid decomposition and oxidation during drying. The fatty acid determination revealed that the most dominant was palmitic acid (42.86%) followed by eicosapentaenoic acid (19.14%) and stearic acid (11.65%). Among the pigments, A. rigida contained fucoxanthin (0.63 mg g−1 of dry fraction), lutein (5.83 mg g−1), β-carotene (6.18 mg g−1) and chlorophyll a (13.65 mg g−1). The analyzed less polar fractions of A. rigida exhibited antioxidant scavenging activity with diammonium salt of 2,2′-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid (ABTS) assay up to 3.87 mg g−1 trolox equivalents (TE), and with the oxygen radical absorbance capacity (ORAC) assay up to 825.63 μmol g−1 TE (with carotenoids as the major contributors).  相似文献   

10.
Fluorosis has been regarded as a worldwide disease that seriously diminishes the quality of life through skeletal embrittlement and hepatic damage. Effective detection and removal of fluorinated chemical species such as fluoride ions (F) and perfluorooctanoic acid (PFOA) from drinking water are of great importance for the sake of human health. Aiming to develop water-stable, highly selective and sensitive fluorine sensors, we have designed a new luminescent MOF In(tcpp) using a chromophore ligand 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4tcpp). In(tcpp) exhibits high sensitivity and selectivity for turn-on detection of F and turn-off detection of PFOA with a detection limit of 1.3 μg L−1 and 19 μg L−1, respectively. In(tcpp) also shows high recyclability and can be reused multiple times for F detection. The mechanisms of interaction between In(tcpp) and the analytes are investigated by several experiments and DFT calculations. These studies reveal insightful information concerning the nature of F and PFOA binding within the MOF structure. In addition, In(tcpp) also acts as an efficient adsorbent for the removal of F (36.7 mg g−1) and PFOA (980.0 mg g−1). It is the first material that is not only capable of switchable sensing of F and PFOA but also competent for removing the pollutants via different functional groups.

A robust In-MOF, In(tcpp), demonstrates sensitive detection of the fluorinated chemical species F and PFOA via distinctly different luminescence signal change, and effective adsorption and removal of both species from aqueous solution.  相似文献   

11.
Three amino alcohols, 3-amino-1-propanol (abbreviated as 3a1pOH), 2-amino-1-butanol (2a1bOH), and 2-amino-2-methyl-1-propanol (2a2m1pOH), were reacted with quinoline-2-carboxylic acid, known as quinaldinic acid. This combination yielded three salts, (3a1pOHH)quin (1, 3a1pOHH+ = protonated 3-amino-1-propanol, quin = anion of quinaldinic acid), (2a1bOHH)quin (2, 2a1bOHH+ = protonated 2-amino-1-butanol), and (2a2m1pOHH)quin (3, 2a2m1pOHH+ = protonated 2-amino-2-methyl-1-propanol). The 2-amino-1-butanol and 2-amino-2-methyl-1-propanol systems produced two polymorphs each, labeled 2a/2b and 3a/3b, respectively. The compounds were characterized by X-ray structure analysis on single-crystal. The crystal structures of all consisted of protonated amino alcohols with NH3+ moiety and quinaldinate anions with carboxylate moiety. The used amino alcohols contained one OH and one NH2 functional group, both prone to participate in hydrogen bonding. Therefore, similar connectivity patterns were expected. This proved to be true to some extent as all structures contained the NH3+∙∙∙OOC heterosynthon. Nevertheless, different hydrogen bonding and π∙∙∙π stacking interactions were observed, leading to distinct connectivity motifs. The largest difference in hydrogen bonding occurred between polymorphs 3a and 3b, as they had only one heterosynton in common.  相似文献   

12.
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   

13.
Inductively coupled plasma mass spectrometry (ICP-MS) has been used to measure the concentration of trace and rare earth elements (REEs) in soils. Geochemical certified reference materials such as JLk-1, JB-1, and JB-3 were used for the validation of the analytical method. The measured values were in good agreement with the certified values for all the elements and were within 10% analytical error. Beach placer deposits of soils mainly from Odisha, on the east coast of India, have been selected to study selected trace and rare earth elements (REEs), to estimate enrichment factor (EF) and geoaccumulation index (Igeo) in the natural environment. Enrichment factor (EF) and geoaccumulation index (Igeo) results showed that Cr, Mn, Fe, Co, Zn, Y, Zr, Cd and U were significantly enriched, and Th was extremely enriched. The total content of REEs (ƩREEs) ranged from 101.3 to 12,911.3 µg g−1, with an average 2431.1 µg g−1 which was higher than the average crustal value of ΣREEs. A high concentration of Th and light REEs were strongly correlated, which confirmed soil enrichment with monazite minerals. High ratios of light REEs (LREEs)/heavy REEs (HREEs) with a strong negative Eu anomaly revealed a felsic origin. The comparison of the chondrite normalized REE patterns of soil with hinterland rocks such as granite, charnockite, khondalite and migmatite suggested that enhancement of trace and REEs are of natural origin.  相似文献   

14.
This study aimed to understand the adsorption process of cephalexin (CPX) from aqueous solution by a biochar produced from the fiber residue of palm oil. Scanning electron microscopy, Fourier transform infrared spectroscopy, Boehm titration, and the point of zero charge were used to characterize the morphology and surface functional groups of the adsorbent. Batch tests were carried out to evaluate the effects of the solution pH, temperature, and antibiotic structure. The adsorption behavior followed the Langmuir model and pseudo-second-order model with a maximum CPX adsorption capacity of 57.47 mg g−1. Tests on the thermodynamic behavior suggested that chemisorption occurs with an activation energy of 91.6 kJ mol−1 through a spontaneous endothermic process. Electrostatic interactions and hydrogen bonding represent the most likely adsorption mechanisms, although π–π interactions also appear to contribute. Finally, the CPX removal efficiency of the adsorbent was evaluated for synthetic matrices of municipal wastewater and urine. Promising results were obtained, indicating that this adsorbent can potentially be applied to purifying wastewater that contains trace antibiotics.  相似文献   

15.
The design and synthesis of conjugated semiconducting polymers for photocatalytic hydrogen evolution have engendered intense recent interest. However, most reported organic polymer photocatalysts show a relatively broad band gap with weak light absorption ability in the visible light region, which commonly leads to a low photocatalytic activity under visible light. Herein, we synthesize three novel dithieno[3,2-b:2′,3′-d]thiophene-S,S-dioxide (DTDO) containing conjugated polymer photocatalysts by a facile C–H arylation coupling polymerization reaction. The resulting polymers show a broad visible light absorption range up to 700 nm and a narrow band gap down to 1.81 eV due to the introduction of the DTDO unit. Benefiting from the donor–acceptor polymer structure and the high content of the DTDO unit, the three-dimensional polymer PyDTDO-3 without the addition of a Pt co-catalyst shows an attractive photocatalytic hydrogen evolution rate of 16.32 mmol h−1 g−1 under visible light irradiation, which is much higher than that of most reported organic polymer photocatalysts under visible light.

Narrow band gap conjugated polymer photocatalysts containing dithieno[3,2-b:2′,3′-d]thiophene-S,S-dioxide show an attractive photocatalytic hydrogen evolution rate of 16.32 mmol h−1 g−1 under visible light irradiation.  相似文献   

16.
One- and two-photon characterizations of a series of hetero- and homoleptic [RuL3-n(bpy)n]2+ (n = 0, 1, 2) complexes carrying bipyridine π-extended ligands (L), have been carried out. These π-extended D−π−A−A−π−D-type ligands (L), where the electron donor units (D) are based on diphenylamine, carbazolyl, or fluorenyl units, have been designed to modulate the conjugation extension and the donating effect. Density functional theory calculations were performed in order to rationalize the observed spectra. Calculations show that the electronic structure of the π-extended ligands has a pronounced effect on the composition of HOMO and LUMO and on the metallic contribution to frontier MOs, resulting in strikingly different nonlinear properties. This work demonstrates that ILCT transitions are the keystone of one- and two-photon absorption bands in the studied systems and reveals how much MLCT and LLCT charge transfers play a decisive role on the two-photon properties of both hetero- and homoleptic ruthenium complexes through cooperative or suppressive effects.  相似文献   

17.
The parents’ addictions and eating habits have a significant influence on the child’s growth. The first stool of a newborn baby provides a large amount of information about xenobiotics transmitted by the mother’s body. The analytical technique used in the study is ion chromatography with pulsed amperometric detection (IC-PAD). The biological samples, which were obtained from women staying in a maternity ward and their partners, revealed cyanide concentrations in urine samples spanning 1.30–25.3 μg L−1. Meanwhile, the results of the meconium samples were in the range of 1.54 μg L−1 to 24.9 μg L−1. Under the optimized chromatographic conditions, the IC-PAD system exhibited satisfactory repeatability (R < 3%, n = 3) and good linearity in the range of 1–100 μg L−1. Thus, it proved to be an effective tool for monitoring trace cyanide concentration in a series of human body fluid matrices, including meconium. Based on the literature review, this is the first application of the IC-PAD analytical technique for the determination of cyanide ions in meconium samples.  相似文献   

18.
A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.  相似文献   

19.
Developing an ideal and cheap adsorbent for adsorbing heavy metals from aqueous solution has been urgently need. In this study, a novel, effective and low-cost method was developed to prepare the biochar from lettuce waste with H3PO4 as an acidic activation agent at a low-temperature (circa 200 °C) hydrothermal carbonization process. A batch adsorption experiment demonstrated that the biochar reaches the adsorption equilibrium within 30 min, and the optimal adsorption capacity of Cd(II) is 195.8 mg∙g−1 at solution pH 6.0, which is significantly improved from circa 20.5 mg∙g−1 of the original biochar without activator. The fitting results of the prepared biochar adsorption data conform to the pseudo-second-order kinetic model (PSO) and the Sips isotherm model, and the Cd(II) adsorption is a spontaneous and exothermic process. The hypothetical adsorption mechanism is mainly composed of ion exchange, electrostatic attraction, and surface complexation. This work offers a novel and low-temperature strategy to produce cheap and promising carbon-based adsorbents from organic vegetation wastes for removing heavy metals in aquatic environment efficiently.  相似文献   

20.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号