首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin (PG) A2, a cyclopentenone PG, induced apoptosis in both HCT116 and HCT116 p53 −/− cells. Although PGA2-induced apoptosis in HCT116 cells was dependent on the p53-DR5 pathway, the mechanism underlying PGA2-induced apoptosis in HCT116 p53 −/− cells remains unknown. In this study, we observed that PGA2 caused an increase of mRNA expression of DR5 and protein expression even in HCT116 p53 −/− cells, accompanied by caspase-dependent apoptosis. Knockdown of DR5 expression by RNA interference inhibited PGA2-induced apoptosis in HCT116 p53 −/− cells. Parallel to the induction of apoptosis, PGA2 treatment upregulated expression of genes upstream of DR5 such as ATF4 and CHOP. Knockdown of CHOP prevented DR5-dependent cell death as well as the expression of DR5 protein. Furthermore, knockdown of ATF4 by RNA interference decreased both mRNA and protein levels of CHOP and DR5, thereby suppressing PGA2-induced cell death. Consistently, the DR5 promoter activity increased by PGA2 was not stimulated when the CHOP binding site in the DR5 promoter was mutated. These results collectively suggest that PGA2 may induce DR5-dependent apoptosis via the ATF4-CHOP pathway in HCT116 p53 null cells.  相似文献   

2.
L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics’ parameters of Km and Vmax were 12.2 × 10−6 M and 121.95 μmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 μg/mL) and HCT 116 (IC50 13.2 μg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.  相似文献   

3.
Several sesquiterpene lactones (STLs) have been tested as lead drugs in cancer clinical trials. Salograviolide-A (Sal-A) and salograviolide-B (Sal-B) are two STLs that have been isolated from Centaurea ainetensis, an indigenous medicinal plant of the Middle Eastern region. The parent compounds Sal-A and Sal-B were modified and successfully prepared into eight novel guaianolide-type STLs (compounds 1–8) bearing ester groups of different geometries. Sal-A, Sal-B, and compounds 1–8 were tested against a human colorectal cancer cell line model with differing p53 status; HCT116 with wild-type p53 and HCT116 p53−/− null for p53, and the normal-like human colon mucosa cells with wild-type p53, NCM460. IC50 values indicated that derivatization of Sal-A and Sal-B resulted in potentiation of HCT116 cell growth inhibition by 97% and 66%, respectively. The effects of the different molecules on cancer cell growth were independent of p53 status. Interestingly, the derivatization of Sal-A and Sal-B molecules enhanced their anti-growth properties versus 5-Fluorouracil (5-FU), which is the drug of choice in colorectal cancer. Structure-activity analysis revealed that the enhanced molecule potencies were mainly attributed to the position and number of the hydroxy groups, the lipophilicity, and the superiority of ester groups over hydroxy substituents in terms of their branching and chain lengths. The favorable cytotoxicity and selectivity of the potent molecules, to cancer cells versus their normal counterparts, pointed them out as promising leads for anti-cancer drug design.  相似文献   

4.
A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 μM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 μM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.  相似文献   

5.
Onosma bracteata Wall. is an important medicinal and immunity-enhancing herbs. This plant is commonly used in the preparation of traditional Ayurvedic drugs to treat numerous diseases. Inspired by the medicinal properties of this plant, the present study aimed to investigate the antiproliferative potential and the primary molecular mechanisms of the apoptotic induction against human osteosarcoma (MG-63) cells. Among all the fractions isolated from O. bracteata, ethyl acetate fraction (Obea) showed good antioxidant activity in superoxide radical scavenging assay and lipid peroxidation assay with an EC50 value of 95.12 and 80.67 µg/mL, respectively. Silica gel column chromatography of ethyl acetate (Obea) fraction of O. bracteata yielded a pure compound, which was characterized by NMR, FTIR, and HR-MS analysis and was identified as 1,2-benzene dicarboxylic acid, bis (2-methyl propyl) ester (BDCe fraction). BDCe fraction was evaluated for the antiproliferative potential against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung carcinoma A549 cell lines by MTT assay and exhibited GI50 values of 37.53 μM, 56.05 μM, and 47.12 μM, respectively. In MG-63 cells, the BDCe fraction increased the level of ROS and simultaneously decreased the mitochondria membrane potential (MMP) potential by arresting cells at the G0/G1 phase, suggesting the initiation of apoptosis. Western blotting analysis revealed the upregulation of p53, caspase3, and caspase9 while the expressions of p-NF-κB, p-Akt and Bcl-xl were decreased. RT-qPCR studies also showed upregulation in the expression of p53 and caspase3 and downregulation in the expression of CDK2, Bcl-2 and Cyclin E genes. Molecular docking analysis displayed the interaction between BDCe fraction with p53 (−151.13 kcal/mol) and CDK1 (−133.96 kcal/mol). The results of the present work suggest that the BDCe fraction has chemopreventive properties against osteosarcoma (MG-63) cells through the induction of cell cycle arrest and apoptosis via Akt/NF-κB/p53 pathways. This study contributes to the understanding of the utilization of BDCe fraction in osteosarcoma treatment.  相似文献   

6.
A novel series of proflavine ureas, derivatives 11a–11i, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing n-alkyl chains. The lipophilicity (LogP) and the changes in the standard entropy (ΔS°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics. The anticancer activity of the synthesized derivatives was evaluated against NCI-60 human cancer cell lines. The urea derivatives azepyl 11b, phenyl 11c and phenylethyl 11f displayed the highest levels of anticancer activity, although the results were only a slight improvement over the hexyl urea, derivative 11j, which was reported in a previous publication. Several of the novel urea derivatives displayed GI50 values against the HCT-116 cancer cell line, which suggest the cytostatic effect of the compounds azepyl 11b–0.44 μM, phenyl 11c–0.23 μM, phenylethyl 11f–0.35 μM and hexyl 11j–0.36 μM. In contrast, the novel urea derivatives 11b, 11c and 11f exhibited levels of cytotoxicity three orders of magnitude lower than that of hexyl urea 11j or amsacrine.  相似文献   

7.
Dietary phytochemicals play an important role in the prevention and treatment of colon cancer. It is reported that group B of soyasaponin, derived from dietary pulses, has anti-colonic effects on some colon cancer cell lines. However, it is uncertain which specific soybean saponins play a role. In our study, as one of the group B soyasaponin, the anti-colon cancer activity of soyasaponins I (SsI) was screened, and we found that it had the inhibitory effect of proliferation on colon cancer cell lines HCT116 (IC50 = 161.4 μM) and LoVo (IC50 = 180.5 μM), but no effect on HT29 between 0–200 μM. Then, nine potential targets of SsI on colon cancer were obtained by network pharmacology analysis. A total of 45 differential metabolites were identified by metabolomics analysis, and the KEGG pathway was mainly enriched in the pathways related to the absorption and metabolism of amino acids. Finally, molecular docking analysis predicted that SsI might dock with the protein of DNMT1, ERK1. The results indicated that the effect of SsI on HCT116 might be exerted by influencing amino acid metabolism and the estrogen signaling pathway. This study may provide the possibility for the application of SsI against colon cancer.  相似文献   

8.
Two new A-ring contracted triterpenoids, madengaisu A and madengaisu B, and one undescribed ent-kaurane diterpenoid, madengaisu C, along with 20 known compounds were isolated from the roots of Potentilla freyniana Bornm. The structures were elucidated using extensive spectroscopic techniques, including 1D and 2D-NMR, HR-ESI-MS, ECD spectra, IR, and UV analysis. Moreover, all isolated constituents were evaluated for their anti-proliferative activity against RA-FLS cells and cytotoxic activities against the human cancer cell lines Hep-G2, HCT-116, BGC-823, and MCF-7. Ursolic acid and pomolic acid displayed moderate inhibitory activity in RA-FLS cells with IC50 values of 24.63 ± 1.96 and 25.12 ± 1.97 μM, respectively. Hyptadienic acid and 2α,3β-dihydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranoside exhibited good cytotoxicity against Hep-G2 cells with IC50 values of 25.16 ± 2.55 and 17.66 ± 1.82 μM, respectively. In addition, 2α,3β-dihydroxyolean-13(18)-en-28-oic acid and alphitolic acid were observed to inhibit HCT-116 cells (13.25 ± 1.65 and 21.62 ± 0.33 μM, respectively), while madengaisu B and 2α,3β-dihydroxyolean-13(18)-en-28-oic acid showed cytotoxic activities against BGC-823 cells with IC50 values of 24.76 ± 0.94 and 26.83 ± 2.52 μM, respectively, which demonstrated that triterpenes from P. freyniana may serve as therapeutic agents for RA and cancer treatment.  相似文献   

9.
A series of novel S-, O- and Se-containing dispirooxindole derivatives has been synthesized using 1,3-dipolar cycloaddition reaction of azomethine ylide generated from isatines and sarcosine at the double C=C bond of 5-indolidene-2-chalcogen-imidazolones (chalcogen was oxygen, sulfur or selenium). The cytotoxicity of these dispiro derivatives was evaluated in vitro using different tumor cell lines. Several molecules have demonstrated a considerable cytotoxicity against the panel and showed good selectivity towards colorectal carcinoma HCT116 p53+/+ over HCT116 p53−/− cells. In particular, good results have been obtained for LNCaP prostate cell line. The performed in silico study has revealed MDM2/p53 interaction as one of the possible targets for the synthesized molecules. However, in contrast to selectivity revealed during the cell-based evaluation and the results obtained in computational study, no significant p53 activation using a reporter construction in p53wt A549 cell line was observed in a relevant concentration range.  相似文献   

10.
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17–1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine.  相似文献   

11.
New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.  相似文献   

12.
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N’-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.  相似文献   

13.
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.  相似文献   

14.
A series of new thiazole-based stilbene analogs were designed, synthesized and evaluated for DNA topoisomerase IB (Top1) inhibitory activity. Top1-mediated relaxation assays showed that the synthesized compounds possessed variable Top1 inhibitory activity. Among them, (E)-2-(3-methylstyryl)-4-(4-fluorophenyl)thiazole (8) acted as a potent Top1 inhibitor with high Top1 inhibition of ++++ which is comparable to that of CPT. A possible binding mode of compound 8 with Top1–DNA complex was further provided by molecular docking. An MTT assay against human breast cancer (MCF-7) and human colon cancer (HCT116) cell lines revealed that the majority of these compounds showed high cytotoxicity, with IC50 values at micromolar concentrations. Compounds 8 and (E)-2-(4-tert-butylstyryl)-4-(4-fluorophenyl)thiazole (11) exhibited the most potent cytotoxicity with IC50 values of 0.78 and 0.62 μM against MCF-7 and HCT116, respectively. Moreover, the preliminary structure–activity relationships of thiazole-based stilbene analogs was also discussed.  相似文献   

15.
The treatment of an aqueous acetonitrile solution of chloroplatinic acid hydrate H2PtCl6.xH2O and pyridine-2-carbaldehyde-oxime (paOH) in the presence of potassium thiocyanate at room temperature (25°) led to the formation of a new Pt(IV) complex with the formula [Pt(SCN)2(paO)2], (1). Complex 1 was fully characterized by FT-IR, UV-vis and NMR spectroscopic techniques as well as elemental analysis. The crystallographic structure of complex 1 was obtained by single-crystal X-ray diffraction. The structure of complex 1 consists of a distorted octahedral geometrical environment around the platinum center in which the coordination sites are occupied by two terminal thiocyanate ligands in trans arrangement and two bidentate paO ligands through four nitrogen atoms. In addition, the in vitro evaluation of the cytotoxicity of platinum complex 1 against four different cancer cell lines was performed. The IC50 values for colon (HCT116), liver (HepG2), breast (MCF-7) and erythroid (JK-1) treated with complex 1 are 19 ± 6, 21 ± 5, 22 ± 6, and 13 ± 3 μM, respectively. In HCT116 cells treated with the IC50 dose of our title compound, apoptosis and necrosis were increased by 34% and 27.8%, respectively. Cells halted in the proliferative phase (S phase) to 21.7 % and 29.8% in HCT116 and HepG2 cells treated with complex 1 have anti-proliferative actions. Furthermore, the catalytic activity of synthesized complex 1 was examined in the oxidation reaction of benzyl alcohols in the presence of an oxidant. Finally, the luminescence behavior of complex 1 was investigated.  相似文献   

16.
Hydro(solvo)thermal reactions of Cd(NO3)2, N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34), and 5-bromobenzene-1,3-dicarboxylic acid (Br-1,3-H2bdc) afforded a luminescent coordination polymer, {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]∙2H2O}n (1). Single-crystal X-ray diffraction analysis showed that 1 features a two-dimensional (2-D) gridlike sql layer with the point symbol of (44·62), where the Cd(II) center adopts a {CdO5N2} pentagonal bipyramidal geometry. Thermogravimetric (TG) analysis confirmed the thermal stability of 1 up to about 340 °C, whereas XRPD patterns proved the maintenance of crystallinity and framework integrity of 1 in CH2Cl2, H2O, CH3OH, and toluene. Photoluminescence studies indicated that 1 displayed intense blue fluorescence emissions in both solid-state and H2O suspension-phase. Owing to the good fluorescent properties, 1 could serve as an excellent turn-off fluorescence sensor for selective and sensitive Cr(VI) detection in water, with LOD = 15.15 μM for CrO42 and 14.91 μM for Cr2O72, through energy competition absorption mechanism. In addition, 1 could also sensitively detect Cr3+, Fe3+, and Al3+ ions in aqueous medium via fluorescence-enhancement responses, with LOD = 2.81 μM for Cr3+, 3.82 μM for Fe3+, and 3.37 μM for Al3+, mainly through an absorbance-caused enhancement (ACE) mechanism.  相似文献   

17.
Bacteria organized in biofilms show significant tolerance to conventional antibiotics compared to their planktonic counterparts and form the basis for chronic infections. Biofilms are composites of different types of extracellular polymeric substances that help in resisting several host-defense measures, including phagocytosis. These are increasingly being recognized as a passive virulence factor that enables many infectious diseases to proliferate and an essential contributing facet to anti-microbial resistance. Thus, inhibition and dispersion of biofilms are linked to addressing the issues associated with therapeutic challenges imposed by biofilms. This report is to address this complex issue using a self-assembled guanidinium–Ag(0) nanoparticle (AD-L@Ag(0)) hybrid gel composite for executing a combination therapy strategy for six difficult to treat biofilm-forming and multidrug-resistant bacteria. Improved efficacy was achieved primarily through effective biofilm inhibition and dispersion by the cationic guanidinium ion derivative, while Ag(0) contributes to the subsequent bactericidal activity on planktonic bacteria. Minimum Inhibitory Concentration (MIC) of the AD-L@Ag(0) formulation was tested against Acinetobacter baumannii (25 μg mL−1), Pseudomonas aeruginosa (0.78 μg mL−1), Staphylococcus aureus (0.19 μg mL−1), Klebsiella pneumoniae (0.78 μg mL−1), Escherichia coli (clinical isolate (6.25 μg mL−1)), Klebsiella pneumoniae (clinical isolate (50 μg mL−1)), Shigella flexneri (clinical isolate (0.39 μg mL−1)) and Streptococcus pneumoniae (6.25 μg mL−1). Minimum bactericidal concentration, and MBIC50 and MBIC90 (Minimum Biofilm Inhibitory Concentration at 50% and 90% reduction, respectively) were evaluated for these pathogens. All these results confirmed the efficacy of the formulation AD-L@Ag(0). Minimum Biofilm Eradication Concentration (MBEC) for the respective pathogens was examined by following the exopolysaccharide quantification method to establish its potency in inhibition of biofilm formation, as well as eradication of mature biofilms. These effects were attributed to the bactericidal effect of AD-L@Ag(0) on biofilm mass-associated bacteria. The observed efficacy of this non-cytotoxic therapeutic combination (AD-L@Ag(0)) was found to be better than that reported in the existing literature for treating extremely drug-resistant bacterial strains, as well as for reducing the bacterial infection load at a surgical site in a small animal BALB/c model. Thus, AD-L@Ag(0) could be a promising candidate for anti-microbial coatings on surgical instruments, wound dressing, tissue engineering, and medical implants.

Dispersion of biofilms that protect bacteria and its subsequent killing in the planktonic state are effectively achieved by a guanidinium–Ag(0) nanocomposite.  相似文献   

18.
Metal-organic frameworks (MOFs) have been rapidly developed for their broad applications in many different chemistry and materials fields. In this work, a multi-dentate building block 5-(4-(tetrazol-5-yl)phenyl)-isophthalic acid (H3L) containing tetrazole and carbolxylate moieties was employed for the synthesis of a two-dimensional (2D) lanthanide MOF [La(HL)(DMF)2(NO3)] (DMF = N,N-dimethylformamide) (1) under solvothermal condition. The fluorescent sensing application of 1 was investigated. 1 exhibits high sensitivity recognition for antibiotic nitrofurantoin (Ksv: 3.0 × 103 M−1 and detection limit: 17.0 μM) and amino acid l-tyrosine (Ksv: 1.4 × 104 M−1 and detection limit: 3.6 μM). This work provides a feasible detection platform of 2D MOFs for highly sensitive discrimination of antibiotics and amino acids.  相似文献   

19.
This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 μM compared to sorafenib (0.0782 μM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 μM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号