首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms produce small molecules known as siderophores to scavenge iron from the environment. Insight into iron acquisition in myxobacteria has been provided recently by the sequencing of the gene cluster for the catecholate myxochelins A and B, from the myxobacterium Stigmatella aurantiaca Sg a15. The gene cluster contains enzymes (MxcCDEF) for assembly of 2,3-dihydroxybenzoic acid (DHBA), an amino transferase, MxcL, and a nonribosomal peptide synthetase (NRPS) subunit, MxcG. In the proposed pathway to the myxochelins, two molecules of DHBA are condensed with the two amino groups of lysine, which is itself tethered to the peptidyl carrier protein domain (PCP) of MxcG. The resulting thioester is then reduced by the NADPH-dependent reductase (Red) domain of MxcG to generate an aldehyde intermediate; subsequent Red-catalyzed reduction yields myxochelin A, while transamination by MxcL produces myxochelin B. Although myxochelin A has been obtained successfully in vitro, it has not been possible to date to reconstitute the transamination reaction to give myxochelin B nor to unequivocally establish the intermediacy of the aldehyde. We report here the successful biosynthesis of myxochelin B in vitro. Furthermore, we demonstrate for the first time the existence of an aldehyde intermediate in the four-electron reduction of a PCP-bound thioester. Finally, we show that the relative levels of myxochelin A and B are likely to be controlled by the direct competition of MxcL and the MxcG Red domain for a free aldehyde intermediate.  相似文献   

2.
A new siderophore containing a 4,5-dihydroimidazole moiety was isolated from Pseudoalteromonas piscicida S2040 together with myxochelins A and B, alteramide A and its cycloaddition product, and bromo- and dibromoalterochromides. The structure of pseudochelin A was established by spectroscopic techniques including 2D NMR and MS/MS fragmentation data. In bioassays selected fractions of the crude extract of S2040 inhibited the opportunistic pathogen Pseudomonas aeruginosa. Pseudochelin A displayed siderophore activity in the chrome azurol S assay at concentrations higher than 50 μM, and showed weak activity against the fungus Aspergillus fumigatus, but did not display antibacterial, anti-inflammatory or anticonvulsant activity.  相似文献   

3.
4.
A new sesquarterpene, heptaprenylcycli-14E,18E-diene, was isolated from Mycobacterium chlorophenolicum cells grown up to the stationary phase. The absence of heptaprenylcycli-14Z,18E-diene indicates that only (E,E,E)-geranylgeranyl diphosphate may be utilized as an intermediate of sesquarterpene biosynthesis in the stationary phase, in contrast with the logarithmic growth phase in which both (E,E)-farnesyl diphosphate and (E,E,E)-geranylgeranyl diphosphate are used. Further, our findings suggest that the stepwise reduction of the polyprenyl group in sesquarterpene biosynthesis might proceed in a different order from that in chlorophyll biosynthesis.  相似文献   

5.
Molybdate uptake and molybdenum cofactor (Moco) biosynthesis were investigated in detail in the last few decades. The present study critically reviews our present knowledge about eukaryotic molybdate transporters (MOT) and focuses on the model plant Arabidopsis thaliana, complementing it with new experiments, filling missing gaps, and clarifying contradictory results in the literature. Two molybdate transporters, MOT1.1 and MOT1.2, are known in Arabidopsis, but their importance for sufficient molybdate supply to Moco biosynthesis remains unclear. For a better understanding of their physiological functions in molybdate homeostasis, we studied the impact of mot1.1 and mot1.2 knock-out mutants, including a double knock-out on molybdate uptake and Moco-dependent enzyme activity, MOT localisation, and protein–protein interactions. The outcome illustrates different physiological roles for Moco biosynthesis: MOT1.1 is plasma membrane located and its function lies in the efficient absorption of molybdate from soil and its distribution throughout the plant. However, MOT1.1 is not involved in leaf cell imports of molybdate and has no interaction with proteins of the Moco biosynthesis complex. In contrast, the tonoplast-localised transporter MOT1.2 exports molybdate stored in the vacuole and makes it available for re-localisation during senescence. It also supplies the Moco biosynthesis complex with molybdate by direct interaction with molybdenum insertase Cnx1 for controlled and safe sequestering.  相似文献   

6.
The oleaginous and red yeast Rhodotorula glutinis CCY 20-2-26 is known for its high-storage lipids accumulation in cells as well as for β-carotene biosynthesis. The work is focused on the study of lipogenesis and carotenoid pigments formation by the yeast grown in media with four different C/N ratios (20:1, 50:1, 70:1 and 100:1). Total fatty acids accumulation in cells reached the maximal value of 48% and yielded up to 8.9 g fatty acid/L media under C/N 70:1. On contrary, while the highest pigment accumulation in the yeast (1268 μg/g of cells) was found at the C/N ratio of 20:1, the maximal carotenoid yield (mainly β-carotene) of 12.7 mg/L was obtained under 50:1 ratio. Calculation of kinetic parameters of metabolites production revealed the metabolic correlations among glucose consumption, lipogenesis and carotenoid biosynthesis. It was demonstrated that glucose exhaustion resulted in reduction of growth and lipid accumulation in cells. Then, storage fatty acids, especially palmitic and oleic acids, begun to be degraded by β-oxidations and formed acetyl-CoA which was especially used for biosynthesis of β-carotene. This is the first study providing the new hypothesis about the metabolic connection between fatty acids and β-carotene metabolism in the red yeasts.  相似文献   

7.
The bioluminescence of dinoflagellate is a typical luciferin-luciferase reaction. To clarify the biosynthesis of dinoflagellate luciferin, we performed a feeding experiment with [15N]-glycine and [15N]-l-glutamic acid in the dinoflagellate Pyrocystis lunula. In a control experiment, we also examined whether or not chlorophyll a was incorporated with these labeled compounds. We detected by mass spectrometry the incorporation of [15N]-glycine and [15N]-l-glutamic acid into the four tetrapyrrole rings of the luciferin. In the control experiment, chlorophyll a was also incorporated with [15N]-glycine and [15N]-l-glutamic acid. Our results show that either glycine or glutamic acid could be the original component of dinoflagellate luciferin as well as chlorophyll a in the dinoflagellate P. lunula.  相似文献   

8.
The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer’s disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.  相似文献   

9.
Acanthella spp. sponges have been prolific sources of highly functionalized diterpene antibiotics. Two Acanthella cavernosa sponges were investigated based on the activity of their extracts in a screen designed to detect bacterial folate biosynthesis inhibitors. Bacillus subtilis PY79 strain harboring a lacZ reporter gene fusion to a trimethoprim-responsive promoter (PpanB) was used for the screen. The ability of kalihinols to inhibit bacterial folate biosynthesis was investigated resulting in preliminary structure activity relationships. Eight kalihinol type diterpenes were isolated from two Philippine Acanthella cavernosa specimens including two new 10- and 15-formamido-kalihinol F analogs.  相似文献   

10.
Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the biosynthesis intermediates and derivatives against M. incognita. Two grammicin biosynthesis intermediates were isolated from a T-DNA insertion transformant (strain TR-74) of X. grammica KCTC 13121BP and identified as 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (compound 1) and 2,5-dihydroxybenzaldehyde (compound 2), which were also reported to be intermediates in the biosynthesis pathway of patulin, an isomer of grammicin. This indicates that the grammicin biosynthesis pathway overlaps almost with that of patulin, except for the last few steps. Among 13 grammicin biosynthesis intermediates and their derivatives (except grammicin), toluquinol caused the highest M. incognita J2 mortality, with an LC50/72 h value of 11.13 µg/mL, which is similar to grammicin with an LC50/72 h value of 15.95 µg/mL. In tomato pot experiments, the wettable powder type formulations (WP) of toluquinol (17.78 µg/mL) and grammicin (17.78 µg/mL) also effectively reduced gall formation on the roots of tomato plants with control values of 72.22% and 77.76%, respectively, which are much higher than abamectin (16.67%), but lower than fosthiazate (100%). The results suggest that toluquinol can be used directly as a biochemical nematicide or as a lead molecule for the development of new synthetic nematicides for the control of root-knot nematode diseases.  相似文献   

11.
Cereal crops are frequently affected by toxigenic Fusarium species, among which the most common and worrying in Europe are Fusarium graminearum and Fusarium culmorum. These species are the causal agents of grain contamination with type B trichothecene (TCTB) mycotoxins. To help reduce the use of synthetic fungicides while guaranteeing low mycotoxin levels, there is an urgent need to develop new, efficient and environmentally-friendly plant protection solutions. Previously, F. graminearum proteins that could serve as putative targets to block the fungal spread and toxin production were identified and a virtual screening undertaken. Here, two selected compounds, M1 and M2, predicted, respectively, as the top compounds acting on the trichodiene synthase, a key enzyme of TCTB biosynthesis, and the 24-sterol-C-methyltransferase, a protein involved in ergosterol biosynthesis, were submitted for biological tests. Corroborating in silico predictions, M1 was shown to significantly inhibit TCTB yield by a panel of strains. Results were less obvious with M2 that induced only a slight reduction in fungal biomass. To go further, seven M1 analogs were assessed, which allowed evidencing of the physicochemical properties crucial for the anti-mycotoxin activity. Altogether, our results provide the first evidence of the promising potential of computational approaches to discover new anti-mycotoxin solutions  相似文献   

12.
13.
Electromagnetic (EM) or thermal stress (HS) result in altered patterns of biosynthesis that are characterized by new and missing proteins. With both EM and HS stresses, proportionally more new low molecular weight (MW) proteins are synthesized and the distribution of their mass is skewed to lower molecular weights. These observations suggest that the new proteins could be the result of an interruption (i.e., early termination) of biosynthesis. The missing proteins are distributed as the control proteins in unexposed samples and are largely negative for all molecular weights. In contrast, the new proteins are distributed symmetrically with regard to 6.0 < pI < 6.5, and smaller molecules are more highly charged, both positively and negatively. The number of new proteins divided by the amount of new protein, a measure of diversity of product, increases with the frequency or repeat rate of the EM stimulation while the number of missing proteins decreases. These data are in accord with the electrochemical model in that interference should increase with both the frequency of the EM and the charge on the molecules, and result in smaller polypeptides than in the control cells. The results on HS appear to follow the same pattern as the EM experiments, indicating that electrochemical properties affect the responses to thermal stimuli.  相似文献   

14.
Biosynthesis belongs to one of the new possibilities of nanoparticles preparation, whereas its main advantage is biocompatibility. In addition, the ability of obtaining the raw material for such synthesis from the soil environment is beneficial and could be useful for remediation. However, the knowledge of mechanisms that are necessary for the biosynthesis or effect on the bio-synthesizing organisms is still insufficient. In this study, we attempted to evaluate the effect of quantum dots (QDs) not only on a model organism of collembolans, but also on another soil organism—earthworm Eisenia fetida—and in also one widespread microorganism such as Escherichia coli. Primarily, we determined 28EC50 as 72.4 μmol L?1 for CdTe QDs in collembolans. Further, we studied the effect of QDs biosynthesis in E. fetida and E. coli. Using determination of QDs, low-molecular thiols and antioxidant activities, we found differences between both organisms and also between ways how they behave in the presence of Cd and/or Cd and Te. The biosynthesis in earthworms can be considered as its own protective mechanism; however, in E. coli, it is probably a by-product of protective mechanisms.  相似文献   

15.
An efficient route is described to an unusual exocyclic 4-β-d-ribofuranosyl-aminoimidazole nucleoside, related 4-N-benzylaminoimidazoles and imidazole analogues of precursors in the de novo biosynthesis of purines, via a regiospecific and stereoselective base-catalysed Dimroth-type rearrangement of 1-ribofuranosyl and 1-benzyl-5-aminoimidazoles. Use of a 15N labelled precursor showed the unequivocal endo- to exocyclic translocation of the nitrogen atom during the rearrangement.  相似文献   

16.
17.
The shikonin derivatives, accumulated in the roots of Arnebia euchroma (Boraginaceae), showed antibacterial, anti-inflammatory, and anti-tumor activities. To explore their possible biosynthesis regulation mechanism, this paper investigated the effects of exogenous methyl jasmonate (MJ) on the biosynthesis of shikonin derivatives in callus cultures of A. euchroma. The main results include: Under MJ treatment, the growth of A. euchroma callus cultures was not inhibited, but the expression level of both the genes involved in the biosynthesis of shikonin derivatives and their precursors and the genes responsible for intracellular localization of shikonin derivatives increased significantly in the Red Strain (shikonin derivatives high-producing strain). The quantitative analysis showed that six out of the seven naphthoquinone compounds under investigation increased their contents in the MJ-treated Red Strain, and in particular, the bioactive component acetylshikonin nearly doubled its content in the MJ-treated Red Strain. In addition, it was also observed that the metabolic profiling of naphthoquinone compounds changed significantly after MJ treatment, and the MJ-treated and MJ-untreated strains clearly formed distinct clusters in the score plot of PLS-DA. Our results provide some new insights into the regulation mechanism of the biosynthesis of shikonin derivatives and a possible way to increase the production of naphthoquinone compounds in A. euchroma callus cultures in the future.  相似文献   

18.
Platinum nanoparticles (PtNPs) were green synthesized by using chloroplatinic acid (H2PtCl6) as raw material and Nymphaea tetragona (N. tetragona) flower extract as the capping and reducing agents to improve skin health. Size-tunable PtNPs were obtained by volume ratios of the initial H2PtCl6/N. tetragona of 1:1 and 1:4, in which PtNPs prepared by the ratio of 1:1 and 1:4 was defined as L1-PtNPs and L4-PtNPs. Their characterizations were investigated by UV–visible spectroscopy, TEM, XRD and FTIR spectroscopy. TEM image analysis showed the particles were well dispersed with the average particle diameters of L1 and L4-PtNPs were 4.04 ± 1.31 nm and 2.01 ± 0.80 nm, respectively. The synthesized PtNPs showed effective antioxidant property and anti-tyrosinase activity in vitro. And further experiments exclaimed that PtNPs can significantly inhibit tyrosinase activity and UVB-induced melanin biosynthesis in A375 cells. This study also revealed PtNPs can promote collagen I biosynthesis in HFF-1 cells by activating the TGF-β/Smad pathway. This research showed the potential efficacy of PtNPs in the skin field and provided evidence for people to consider applying PtNPs to skin protection.  相似文献   

19.
The maremycin biosynthetic gene cluster has been identified in Streptomyces sp. B9173. Comparative metabolic profiling with knockout mutant strains led to the identification of new products correlated to the maremycin biosynthesis, in particular the “demethyl”-maremycins with an unexpected D-tryptophan unit. A biosynthetic pathway for the maremycins is proposed and plausible reasoning for tryptophan epimerization in the demethylmaremycin biosynthesis is also provided.  相似文献   

20.
AsLn2, an unusual modified peptide, was isolated from the bioluminescent earthworm Fridericia heliota (Enchytraeidae). Its structure, elucidated by NMR and mass spectrometry, includes residues of tyrosine, CompX (a novel tyrosine modification product, reported in the accompanying paper), and N(omega)-acylated lysine. Chromatography, UV, and 1H NMR data imply a close structural similarity of AsLn2 with F. heliota luciferin. AsLn2 appears to be an intermediate or by-product in F. heliota luciferin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号